
Factoring a semiprime n by estimating φ(n)

Kyle Kloster

May 7, 2010

Abstract

A factoring algorithm, called the Phi-Finder algorithm, is presented
that factors a product of two primes, n = pq, by determining φ(n). The
algorithm uses precisely (

√
p−√q)2/blog2(pq)c iterations. It is demon-

strated that if |p − q| ≤
√
n2−k then n can be factored in less than√

n2−2(k+1)/blog2(pq)c iterations. Furthermore, the algorithm can quickly
factor some semiprimes that are constructed according to current RSA
standards, though it is shown to be sufficiently improbable that such
semiprimes would be constructed at random.

Phi-Finder is shown to be strictly faster than Fermat Factorization
and trial division, and faster than the Quadratic Sieve and Coppersmith’s
known-bit attack under the condition that |p−q| is small. The possibility
of generalizing Phi-Finder to factor n when p/q is very near some obvious
ratio is discussed.

A condition for an early successful termination is discussed, namely
if ordn 2 < (

√
p − √q)2. Experimental data is presented that strongly

suggests the condition is highly improbable.

1 Introduction

The RSA encryption system operates with a modulus n which is the product of
two distinct primes p and q. Such integers are called “semiprimes.” Factoring
n and computing φ(n) are equivalent in the following sense: computing φ(n)
can be done efficiently if we factor n = pq, since φ(n) = (p − 1)(q − 1), and,
conversely, if φ(n) is known and it is known that n = pq is a product of two
primes, then p and q are the roots of the quadratic equation

x2 − (n− φ(n) + 1)x+ n.

Although, computing φ(n) and factoring n are equivalent, most number-
theoretic attacks on RSA attempt to factor n rather than directly compute
φ(n) [14] [2] [5] [13] [9] [16]. If either n is factored or φ(n) is known, it is
trivial to derive the private key from the public key, resulting in the possibility
of private messages being read, digital signatures being forged, etc. Breaking
the RSA encryption system is conjectured to be as difficult as factoring the

1

modulus, n = pq [11] [17]. Hence, to ensure that an RSA modulus n is secure
it is necessary to make n difficult to factor.

In this thesis is presented a method of estimating φ(n) and an algorithm for
computing φ(n) without factoring n that uses (

√
p−√q)2/blog2(pq)c iterations.

Once φ(n) is computed, n can be factored efficiently using the above quadratic
equation. It is shown that if the prime factors of an RSA modulus are chosen
such that they are “too close together” the algorithm presented below in Figure
3.3 can compute φ(n) easily (and thus factor n). The notion of “too close
together” is made precise in Theorem 10.

Because it computes φ(n), the algorithm is referred to here as the Phi-
Finder algorithm, given in Figure 3.3. It is possible, however, that the Phi-
Finder algorithm computes a multiple of the order of 2 modulo n that is not
φ(n). This exception is discussed in detail in Section 3.2, and it is shown to be
improbable.

It is shown that Phi-Finder is faster, in the case of factoring integers with
the structure of an RSA modulus, than Fermat factorization, another method
that works efficiently when |p− q| is small, as well as the Quadratic Sieve (QS)
and General Number Field Sieve (GNFS), which are general purpose algorithms
incapable of taking advantage of the special structure of n.

Phi-Finder is also compared to Coppersmith’s known-bit attack in which
knowledge of (log2 n)/4 of the MSBs of either prime provides an efficient fac-
torization of n [3]. The possibility is discussed of a generalization of Phi-Finder
that would enable the algorithm to factor n given knowledge of some of the bits
of r = p/q. Runtimes of Phi-Finder, Fermat factorization, and the QS are given
in Tables 3, 2, and 1.

Although Phi-Finder was independently developed as presented in this pa-
per, some of the essential ideas behind the algorithm were explored in 2005
in the doctoral dissertation of Yousef Bani Hammad [4]. Hammad named his
algorithm the RAK algorithm after the city of Ras al-Khaimah in the United
Arab Emirates.

2 Background

Integer factorization methods for factoring the product of two primes can be
divided into two categories: general-purpose algorithms, which have running
times that depend on only the size of n, and special-purpose algorithms, which
have running times that depend on some special structure of n (e.g. the size of
the smallest prime divisor of n), and depend only marginally on the size of n.

Generally speaking, a special-purpose method suceeds much more quickly
than general-purpose methods if n has a special structure, e.g. if |p− q| or the
smallest prime divisor of n is small. If n has no such form that can be exploited
by known algorithms, then general-purpose methods are asymptotically faster.

2

2.1 General-Purpose Factoring Methods

Currently, the fastest useable general-purpose factoring algorithms are the Gen-
eral Number Field Sieve (GNFS) and the Multiple Polynomial Quadratic Sieve
(MPQS) [2] [10] [14]. Peter Shor’s algorithm for quantum computers can factor
integers in polynomial time, but it requires a quantum computer that is far
larger than can currently be built [12].

Since the runtimes of general-purpose algorithms depend entirely on the size
of n, an RSA modulus that is chosen to be sufficiently large enough cannot
be factored by such algorithms in a reasonable time. For example, in the most
recent factoring record, set in December 2009, the 768-bit RSA challenge number
took approximately 1500 processor years using the GNFS [15]. The authors
estimated that the factorization of a 1024-bit modulus using the GNFS would
be “about a thousand times harder” [15].

Thus, it is easy to choose primes that are large enough to guard against
these general-purpose factoring methods, so choosing an RSA modulus that is
difficult to factor is then a matter of selecting its prime factors so that they have
no special structure that would make the modulus easy to factor.

2.2 Special-Purpose Factoring Methods

The parameters that determine the runtime of special-purpose methods vary
from method to method. For example, the runtime of a factoring method like
the Elliptic Curve Method (ECM) or Pollard’s Rho Method depends mostly on
the size of the smallest prime factor of n [5] [8].

On the other hand, Pollard’s p − 1 and Williams’ p + 1 factoring methods
have runtimes that depend mostly on whether or not a prime factor p of n has
the property that p− 1 or p+ 1 is smooth [9] [16]. But because these particular
factoring algorithms work efficiently only when n has some special form, RSA
moduli can be constructed so that they are secure against algorithms like these.

Constructing an RSA modulus so that it has no small prime divisor avoids
the threat posed by ECM and Pollard’s Rho. Similarly, constructing n = pq
by choosing p and q so that p± 1 and q ± 1 each have at least one large prime
divisor guards against the p ± 1 factoring methods. Frequently, a prime p is
chosen so that (p−1)/2 is also prime. Primes that have this property are called
safeprimes.

In general, the invention of a special-purpose factoring algorithm further
restricts the selection of primes that can be used to build an RSA modulus that
is safe from known factoring attacks. Below, an algorithm is presented that
finds φ(n), and so can factor n, using (

√
p−√q)2/blog2(pq)c steps. Thus, if p

and q are too close together then (
√
p − √q)2 will be small, and so n can be

easily factored. The notion of p and q being “too close together” is made precise
in Theorem 10. First, the Phi-Finder algorithm is described.

3

3 The Phi-Finder Algorithm

The motivation for factoring an RSA modulus n is that a factorization of n
allows us to calculate φ(n) easily, and then the private key can be computed.
Suppose that instead of factoring n, we try to guess φ(n). Note that we know
something about the structure of any RSA modulus, that it is always the product
of exactly two primes, so we know that φ(n) has the form φ(n) = pq−p− q+ 1.

The National Institute of Standards and Technology (NIST) maintains a set
of standards called the Digital Signature Standard (DSS) for the generation of
secure parameters for cryptographic systems, including standards for generating
RSA moduli [7]. We therefore have more knowledge about the form of any RSA
modulus constructed according to the standards in the DSS.

We know that usually the two primes chosen are safeprimes, i.e. p = 2u +
1, q = 2v + 1 for u and v primes. If p and q are not safeprimes, then the DSS
requires that p− 1 and q− 1 each have at least one prime factor that is greater
than 2100, and in some cases even larger [7]. We also know that p and q are
somewhat close together: if we let r denote the ratio of the prime factors of
n so that r = p/q, where p is the larger prime, then we know 1 < r <

√
2 is

true [7]. Now we will express φ(n) in a form that allows us to take advantage
of this information.

3.1 Estimating φ(n)

Lemma 1. Let n = pq and r = p/q. Then φ(n) = n−
√
n
(
r+1√
r

)
+ 1.

Proof. Since r = p/q, we have p = rq and so n = pq = rq2. Thus we can write
q =

√
n/r and p =

√
nr. Now we can express

φ(n) = pq − p− q + 1

= n−
√
nr −

√
n/r + 1

= n−
√
n
(√
r + 1/

√
r
)

+ 1

= n−
√
n
(
(r + 1)/

√
r
)

+ 1

Since we know that 1 < r <
√

2, we can “guess” the value of r as g and then
estimate φ(n) using the above formula.

Definition 2. Let n = pq and r = p/q. Let g be our guess of the value r.
Define φ̂g(n) as

φ̂g(n) = n−
√
n ((g + 1)/

√
g) + 1.

Thus, φ̂g(n) provides an estimate of φ(n). Now we would like to know the
error term in this estimation.

4

Theorem 3. Let n = pq, a product of distinct primes, and let φ̂g(n) be defined
as above. Then

φ̂g(n)− φ(n) = q(
√
r −√g)(

√
r − 1/

√
g) (1)

= (
√
p−√q√g) (

√
p−√q/√g) (2)

Furthermore, if 1/r < g < r, then φ̂g(n) > φ(n), i.e. φ̂g(n) is an overestimate.

Proof. From Definition 2 and from Lemma 1 we have

φ̂g(n)− φ(n) = n−
(√
n(g + 1)

)
/
√
g + 1−

(
n−

(√
n(r + 1)

)
/
√
r + 1

)
(3)

=
√
n
(
(r + 1)/

√
r
)
−
√
n ((g + 1)/

√
g) (4)

=
√
n
(√
r + 1/

√
r −√g − 1/

√
g
)

(5)
=
√
n(
√
r −√g)(1− 1/

√
rg) (6)

= q
√
r(
√
r −√g)(1− 1/

√
rg) (7)

= q(
√
r −√g)(

√
r − 1/

√
g) (8)

=
√
q(
√
r −√g)

√
q(
√
r − 1/

√
g) (9)

= (
√
p−√q√g) (

√
p−√q/√g) (10)

Equations (8) and (10) above prove equations (1) and (2) of the theorem. Ob-
serve from (8) that if 0 < g < r, then (

√
r −√g) is positive, and if g > 1/r > 0

then 1 > 1/rg and so (1− 1/
√
rg) is positive. Thus, as long as 1/r < g < r, we

have φ̂g(n)− φ(n) > 0 and so φ̂g(n) will be an overestimate.

The fact that φ̂g(n) is an overestimate is important because it guarantees
that if we decrement from φ̂g(n), we are guaranteed to reach φ(n) eventually. In
other words, decrementing from φ̂g(n) will successfully terminate by copmuting
φ(n). It is simple to ensure that 1/r < g < r since we know from the DSS that
1 < r <

√
2 is true [7].

If, in addition, we know enough of the most significant bits (MSBs) of either
p or q then Phi-Finder provides a known-bit attack because we can compute the
same number of MSBs of r and use the above formula for estimating φ(n). This
possibility is discussed more in Section 4. On the other hand, if we continue
with our above assumption that p and q are close together, we can conclude
that p/q = r is probably very near 1. Thus, the particular estimate g = 1, or
φ̂1(n), seems especially important.

Corollary 4. If we set g = 1, i.e. it is assumed that r = 1 + ε, then

φ̂1(n)− φ(n) = (
√
p−√q)2 > 0 (11)

= q(
√
r − 1)2. (12)

Proof. Equation (11) follows from plugging g = 1 into equation (2) from The-
orem 3. Equation (12) follows from plugging g = 1 into equation (1) from
Theorem 3.

5

Lemma 5. If 1 < r <
√

2 then φ(n) < φ̂g(n) < 2φ(n).

Proof. We already know φ(n) < φ̂g(n) as long as 1/r < g < r. It suffices to
show that φ̂g(n) < 2φ(n), i.e. φ̂g(n)− 2φ(n) < 0.

φ̂g(n)− 2φ(n) = n−
√
n(g + 1)
√
g

+ 1− 2
(
n−
√
n(r + 1)√

r
+ 1
)

=
√
n
(
(2r + 2)/

√
r − (g + 1)/

√
g
)
− n− 1

=
√
n
(
(2r + 2)/

√
r − (g + 1)/

√
g −
√
n
)
− 1

But (2r+2)/
√
r−(g+1)/

√
g−
√
n must be negative: (2r+2)/

√
r−(g+1)/

√
g is

at most
√

2, when r =
√

2 and g = 1, and
√
n is several hundred digits, so their

difference must be negative. Thus, φ̂g(n)−2φ(n) < 0 and so φ̂g(n) < 2φ(n).

Hence, as long as 1/r < g < r we always have 2φ(n) > φ̂g(n) > φ(n). From
the proof given it seems likely that the bounds could be made more tight, but
this result is all that is needed in this thesis. This guarantees that if we denote
our estimate φ(n) as φ̂ = φ̂g(n) = n − 2

√
n + 1, and naively check all integers

φ̂− 1, φ̂− 2, φ̂− 3, ..., then we will eventually reach the true value of φ(n), and
not a multiple of φ(n). Not only that, Theorem 3 tells us that the number of
integers that we would have to go through is exactly

(√
p−√qg

) (√
p−

√
q/g
)

.
This process would be inefficient, but at least we are now certain that it will
terminate successfully.

Observe that we can test

2φ̂−x ≡ 1 mod n

to check a given estimate φ̂ − x. This is because if φ̂ − x is equal to the true
value φ(n), then 2φ̂−x will be congruent to 1 because the multiplicative group
Z/nZ× has order φ(n). Note that this introduces the issue of whether φ̂− x is
actually φ(n) or some other multiple of ordn 2 inside the interval (φ̂, φ(n)).

Now we want to address the problem of whether we compute ordn 2 or φ(n),
and we would like a method of reaching φ(n) that is more efficient than checking
via expensive modular exponentiations whether or not 2φ̂−x ≡ 1 mod n for each
possible x.

3.2 Comparing ordn 2 and φ(n)

In this section it is shown that it is highly improbable that Phi-Finder computes
a multiple of ordn 2 other than φ(n), and in some cases it is even impossible.
First, it is shown that it is impossible when n is the product of two safeprimes.

Theorem 6. Let n = pq and r = p/q with p > q, where p and q are safeprimes.
If 1 < r < 23

8 and 16 < n, then no integer multiple of ordn 2 exists inside the
interval (φ̂1(n), φ(n)).

6

Proof. Since p and q are safeprimes, there exist primes a and b so that a =
(p − 1)/2, b = (q − 1)/2, and so φ(n) = (p − 1)(q − 1) = 4ab. Since ordn 2
must divide φ(n) and ordn 2 is positive by definition, the set of possible values
for ordn 2 is then {b, 2b, 4b, a, 2a, 4a, ab, 2ab, 4ab}. The numbers 1, 2, and 4 are
omitted from the set since clearly 2 6= 1, 4 6= 1, and 16 6= 1 mod n, because
n > 16. Finally, since 2a + 1 = p > q = 2b + 1, a is greater than b, and so b is
the smallest element of the set.

We want to show that no integer multiple of ordn 2 exists in (φ̂1(n), φ(n)).
Since φ(n) is an integer multiple of ordn 2, i.e. φ(n) = k ordn 2 for some integer
k, it suffices to show that φ(n) + ordn 2 = (k + 1) ordn 2 > φ̂1(n). Then we will
have that

(k + 1) ordn 2 > φ̂1(n) > φ(n) = k ordn 2.

Now since b is the smallest possible value of ordn 2, (4a+ 1)b is the smallest
possible multiple of ordn 2 that is greater than φ(n) = 4ab. Thus, it suffices to
show that (4a+ 1)b > φ̂1(n).

Recall that φ̂1(n) = n − 2
√
n + 1 and n = pq = q2r. We also have

√
n =√

q2r = q
√
r, and so we can write φ̂1(n) = q2r − 2q

√
r + 1. Also, since a =

(p− 1)/2 and b = (q − 1)/2, we have that

(4a+ 1)b = (2(p−1) + 1)(q−1)/2 = (2qr−2 + 1)(q−1)/2 = (2qr−1)(q−1)/2.

Thus, the theorem holds, i.e. (4a + 1)b > φ̂1(n) is true, when we have the
following:

(2qr − 1)(q − 1)/2 > q2r − 2q
√
r + 1

2q2r − q − 2qr + 1 > 2q2r − 4q
√
r + 2

−q − 2qr > −4q
√
r + 1

0 > 2qr − 4q
√
r + 1 + q

0 > 2r − 4
√
r + 1 + 1/q

Note that this is a quadratic equation in
√
r. Solving it for

√
r yields

√
r =

4±
√

16− 4(2)(1 + 1/q)
4

= 1±
√

4− 2(1 + 1/q)
2

= 1± 1
2

√
2− 2/q

and so we have

1− (1/2)
√

2− 2/q <
√
r < 1 + (1/2)

√
2− 2/q

1−
√

2− 2/q + 1/4 (2− 2/q) < r < 1 +
√

2− 2/q + 1/4 (2− 2/q)

3/2−
√

2− 2/q − 1/(2q) < r < 3/2 +
√

2− 2/q − 1/(2q)

Now since q is enormous, 1/q is negligible, and so
√

2− (2/q) − 1/(2q) ≈
√

2,
hence the left-most part of the inequality is very near 3/2 −

√
(2) < 1. Thus,

since r > 1 the left side of the inequality is always satisfied. Similarly, since√
2− (2/q) − 1/(2q) ≈

√
2, the right-most part of the inequality is very near

7

3/2 +
√

2 > 23/8. Thus, when r < 23/8 the above inequalities hold, and so
(4a + 1)b > φ̂1(n) holds. Thus, there is no integer multiple of ordn 2 in the
interval (φ̂1(n), φ(n)) when 1 < r < 23/8 and n is a product of two large
safeprimes.

The case when p and q are not safeprimes: Since n is not always the
product of two safeprimes, we want to analyze the size of the order of 2 in
the case that n is not the product of two safeprimes. Recall from the proof of
Theorem 6 that no integer multiple of ordn 2 exists in the interval (φ̂1(n), φ(n))
when

φ(n) + ordn 2 > φ̂1(n)

i.e. when

ordn 2 > φ̂1(n)− φ(n) = (
√
p−√q)2.

Now we would like to compute the probability of having ordn 2 > (
√
p−√q)2.

First we recall from elementary number theory that for any integer b coprime
to two primes p and q,

ordpq b = lcm(ordp b, ordq b).

Thus, a lowerbound for ordp 2 is also a lowerbound for ordn 2.

An Experiment To find a probabilistic lowerbound for ordp 2 where p is a
random prime, primes were generated randomly using the mpz rrandomb func-
tion from the GNU Multiple Precision (GMP) library, and ordp 2 was computed.
Over 150,000 primes were generated, and for every prime p it was found that
ordp 2 > p1/3. In fact, for all but one hundred or so of the primes it was found
that ordp 2 > p1/2, and all but a couple hundred even satisfied ordp 2 > p2/3.

Therefore, we will assume that ordp 2 > p1/3 and ordq 2 > q1/3. Since we
know that ordn 2 = lcm(ordp b, ordq b), we then have

(pq)1/3 ≥ ordn 2 ≥ max(q1/3, p1/3) > n1/6.

Hence, it seems that ordn 2 > n1/6 > (
√
p − √q)2 will hold with very high

probability as long as (
√
p−√q)2 is less than n1/6. But since we are assuming

that |p− q| is small, the condition that n1/6 > (
√
p−√q)2 is guaranteed.

However, this is a conservative estimate: it is possible that ordp b and ordq b
are “mostly” coprime, or entirely coprime, and so lcm(ordp b, ordq b) would be
closer to n1/3 than to n1/6. In this case, it seems probable, if slightly less so,
that ordn 2 > n1/3 > (

√
p−√q)2.

An Exception It should be emphasized that the size of the primes tested
varied between 220 and 250 because computing ordp 2 is difficult for very large
primes as it requires factoring p − 1. Thus, the experiments described above
might not provide an accurate representation of the probability of ordp 2 > p1/3

8

being true for primes of the size required by the DSS. However, during the
experimentation, the larger the prime was, the fewer exceptions there were
when the prime was tested for ordp 2 > p1/2. Thus, it seems that increasing the
size of a prime increases the likelihood that ordp 2 > p1/2.

Note that inequalities such as ordp 2 > p1/3 do not hold for all primes, though
it seems highly likely. For example, for any Mersenne prime, i.e. a prime of the
form p = 2k−1 where k is prime, it is always the case that ordp 2 = k = dlog2 pe
which is always less than p1/3 if k > 3. Despite this, it seems that ordn 2 > n1/3

is true with high probability for n the product of two randomly chosen primes.

Two conjectures It should be noted that for all numbers n for which a
factorization of n was attempted using Phi-Finder (except those with log2 n =
128), φ̂1(n) − φ(n) was vastly smaller than even n1/3, and yet φ(n) was suc-
cessfully computed by the Phi-Finder algorithm, in all cases. Thus, for all
experimental data (except possibly the numbers with bit-length 128), it was
found that ordn 2 > φ̂1(n) − φ(n) = (

√
p − √q)2 was true. The experimental

data given here and above lead us to make the following conjecture.

Conjecture 7. For a positive integer n, ordn 2 > n1/3 with very high probabil-
ity, and so Phi-Finder will compute φ(n) with very high probability.

Conjecture 8. For a positive integer n, ordn 2 > n2/3 with high probability,
and so Phi-Finder will compute φ(n) with high probability.

Finally, it should be noted that if this condition does not hold, and Phi-
Finder computes a multiple of ordn 2 other than φ(n), this is actually a condition
for the sucessful early termination of Phi-Finder. This is because if a multiple of
the order of 2, call it k ordn 2, exists in the interval (φ̂1(n), φ(n)) then k ordn 2 >
φ(n) and so we have

φ̂1(n)− k ordn 2 < φ̂1(n)− φ(n).

Hence, ordn 2 is reached before φ(n) by decrementing from φ̂1(n), so Phi-Finder
requires fewer than the expected number of iterations, (

√
p−√q)2/blog2 pqc.

Summary To summarize thus far, we are given n, a product of two primes
that are fairly close together, and we want to find φ(n). First, we estimate φ(n)
to be φ̂g(n). We know that φ̂g(n) is a certain positive distance above the actual
value of φ(n), but we cannot compute the error of our estimate without having
more information about p or q.

In the next section is developed a method of decrementing φ̂g(n) closer and
closer to φ(n) and checking whether or not φ̂g(n) = φ(n) that is faster than the
naive method described above.

9

3.3 Improvements

Let E denote φ̂g(n), our estimate of φ(n). Note that if we compute 2E (mod
n), and the result is still a power of 2, say 2t, then we would have

2E ≡ 2E−φ(n) ≡ 2t mod n.

Because 2E ≡ 2t (mod n), then we have

2E−t ≡ 1 ≡ 20 mod n.

This equivalency implies that E − t is an integer multiple of ordn 2 satisfying
E > E− t ≥ φ(n). However, if we assume that n is a product of two safeprimes
and we are using the estimate g = 1, then we know by Theorem 6 that E − t is
a multiple of φ(n) since no integer multiple of ordn 2 exists inside the interval
(E, φ(n)). Then by Corollary 5 we have that 2φ(n) > E, and so we know
E − t = φ(n). If n is not the product of two safeprimes then it is still highly
probable that E − t = φ(n), as discussed above in Section 3.2.

Now observe that it will only be the case that 2E ≡ 2t for 1 ≤ 2t < n if we
have 0 ≤ t ≤ log2(n). This is because the inequality t > log2(n) implies 2t > n.
From this we can conclude that if φ̂ is within blog2(n)c of φ(n), then 2φ̂ reduced
modulo n will be congruent to some lower power of 2 in the integers, 2t. This
means that we need not test every value E − x to see if E − x = φ(n). Instead,
we can take larger steps of size blog2(n)c.

Testing each value E − x by evaluating 2E−x introduces the problem of
repeatedly taking modular exponentiations. This is costly, especially since E−x
is enormous, i.e. O(n). To improve on this, we first set L = blog2(n)c and
E0 = 2−E mod n. Now we can decrement our estimate E so that it approaches
φ(n). We do this by repeatedly multiplying Ei by 2L and then reducing mod n.
Note that multiplying by 2L is really just shifting left by blog2(n)c bits. Thus,
we have an initial value E0 and an iterative process wherein we multiply E0 by
2L (mod n), by shifting bits.

After each iteration, we need to check whether the current value

Ei = Ei−1 · 2L = E0 · 2iL

is a power of 2 after being reduced mod n. This can be done efficiently by
checking the binary representation of the number. Thus, each iteration costs

• one bit shift by L bits

• one modular reduction by n

• checking if the result is a power of 2 in the integers

• and then incrementing a counter i.

10

INPUT: A product of two distinct primes, n.

OUTPUT: φ(n)

1. Set inital values:

(a) E ← φ̂1(n)

(b) E0 ← (2E)−1 modulo n

(c) L← blog2 nc
(d) i← 0

2. While Ei “is not a power of 2 in the integers” do

(a) shift Ei left by L bits

(b) reduce Ei modulo n

(c) i← i+ 1

Note: At this point we know:

• Ei ≡ 2t(mod n), for some integer t.

• 0 ≤ t ≤ L
• Ei = 2iL−E

• 2iL−E ≡ 2t mod n

• 2iL−E−t ≡ 1 ≡ 20 mod n

• iL− E − t ≡ 0 mod ordn 2

• Thus, iL−E − t is a multiple of ordn 2, but by Theorem 6 we know
that iL− E − t = φ(n).

3. Return φ(n)← iL− E − t

Figure 1: The Phi-Finder Algorithm

4 Analysis of the Phi-Finder Algorithm

As mentioned at the end of Section 3.3, each iteration of the main loop of the
algorithm has four operations. Out of these four steps, reducing Ei · 2L modulo
n, is the rate-determining step, as it is a multi-byte operation. The process of
checking whether Ei is a power of 2 in the integers consists of evaluating the
floor of size of Ei in bits and then scanning Ei to check that the position of its
first (right-most or least-significant) non-zero bit is the same as its size in bits.
The other three operations are done with the “mpz mul 2exp” and “mpz mod”
functions in the GMP Library.

The algorithm is more efficient when r is near 1 and the user estimates g = 1,

11

so we will consider this case first. The algorithm checks the integers between
φ̂1(n) and the true value of φ(n) in intervals of L = blog2(n)c. There are φ̂1(n)−
φ(n) = (

√
p−√q)2 such integers to check, but since the algorithm decrements by

intervals of L, we see that the algorithm uses (
√
p−√q)2/blog2(pq)c iterations.

Thus the number of bit-shifts and modular reductions required is(√
p−√q

)2
blog2(pq)c

plus one modular inversion in the setup phase. Now one can calculate how close
together p and q must be for the algorithm to work efficiently.

Lemma 9. If r = 1 + 2x then
√
r < 1 + 2x−1.

Proof.

r = 1 + 2x

= 1 + 2 · 2x−1

< 1 + 2 · 2x−1 + 22x−2

< (1 + 2x−1)2
√
r < 1 + 2x−1

Theorem 10. Let n = pq, let 1 < p/q <
√

2, and let k ∈ R be such that
|p− q| =

√
n2−k. Then

φ̂1(n)− φ(n) <
√
n2−2k−7/4.

Proof. Let ε ∈ R such that q =
√
n2−ε. Now since |p − q| =

√
n2−k, we have

that

r = p/q = (q + p− q)/q = 1 + (p− q)/q

= 1 +
√
n2−k√
n2−ε

= 1 + 2−k+ε.

Since r = 1 + 2−k+ε, by Lemma 9 we have that
√
r < 1 + 2−k−1+ε

√
r − 1 < 2−k−1+ε

(
√
r − 1)2 < 2−2k−2+2ε

and by Corollary 4, we have that

φ̂1(n)− φ(n) = q(
√
r − 1)2 < q · 2−2k−2+2ε

<
√
n2−ε · 2−2k−2+2ε

<
√
n2−2k−2+ε

12

Then p = n
q = n√

n2−ε =
√
n2ε which implies r = p

q =
√
n2ε

√
n2−ε = 22ε. But we also

know that 1 < r <
√

2, so we have 20 < 22ε < 21/2. Thus, 0 < ε < 1/4, and so
we have

φ̂1(n)− φ(n) <
√
n2−2k−2+ε <

√
n2−2k−7/4

In the case that g 6= 1, the Phi-Finder algorithm is less efficient and its
runtime is more difficult to describe. However, the following theorem provides
rough bounds on the runtime of the Phi-Finder algorithm when the ratio r = p/q
is estimated to be g 6= 1.

Theorem 11. Let n = pq, let r = p/q satisfy 1 < r <
√

2, and let g, our
estimate of r, satistfy 0 < r − g < 2−k. Then

φ̂g(n)− φ(n) <
√
n2−k−2.

Proof. By equation (6) of Theorem 3 we have that

φ̂g(n)− φ(n) <
√
n(
√
r −√g)(1− 1/

√
rg).

Since 1 < g < r <
√

2, we have that gr < 2, which implies that
√
gr <

√
2.

This gives us that −1/
√
rg < −

√
2/2 < 0. Hence, we have that

(1− 1/
√
rg) < 1−

√
2/2 < 1/2.

This inequality implies that

φ̂g(n)− φ(n) <
√
n(
√
r −√g)(1− 1/

√
rg) <

√
n(
√
r −√g)(1/2).

Furthermore, we know that r − g = 2−k, so we have

r − g =
√
r
2 −√g2

= (
√
r −√g)(

√
r +
√
g) = 2−k(√

r −√g
)

= 2−k/
(√
r +
√
g
)

But r and g are both at least 1, and so
√
r+
√
g is at least 11/2 +11/2 = 2. This

implies that
(
√
r −√g) < 2−k(1/2) = 2−k−1.

Finally, we have

φ̂g(n)− φ(n) <
√
n(
√
r −√g)(1/2) <

√
n2−k−2

which proves the theorem.

The version of Phi-Finder with g 6= 1 is inferior to the runtime of Phi-
Finder when g = 1, since the exponent k in the expression of the runtimes has a
coefficient of 2 in the latter whereas the coefficient of k is 1 in the former. This
implies that Phi-Finder with g 6= 1 uses 2k times the number of iterations that
would be used if g = 1. Surely improvements can be made on the bounds for
the case when g 6= 1, but this is left for future work.

13

5 Experimental Results

We present in the tables below the sizes of products of two primes p and q, the
sizes of the differences |p−q| and (

√
p−√q)2, as well as the time to factor each.

Take as a concrete example of these data the following product of two primes:

pq = 12 564 733 994 859 564 943 378 851 488 880 676 440 897 987 946
823 714 584 149 539 076 705 853 364 647 623 021 561 002 480 605 777
661 118 593 343 755 993 562 300 984 166 544 929 173 711 618 863 066
289 571,

and
p = 112 092 524 259 468 637 159 311 703 158 589 446 157 609 360 330
066 292 477 642 325 201 809 507 359 171,
q = 112 092 524 259 468 637 159 311 703 158 589 444 935 093 419 977
906 478 398 217 165 142 400 568 522 401

The product is 512 bits in length, and each prime is 256 bits long. The
difference, p− q, is 139 bits, and the Phi-Finder algorithm factored n in under
.01 seconds. Note that the 35 underlined digits of p and q above are identical,
and p and q each have 78 decimal digits, while n has 155 digits.

The runtimes displayed in Tables 3 and 2 show that Phi-Finder factors a
semiprime n instantly when |p− q| ≈ n1/4. The tables show that the algorithm
succeeds rather quickly even when |p − q| is slightly greater than n1/4. In
addition, the algorithm can succeed that quickly with integers that are very
large: the tables show runtimes for integers n with log2 n up to 3072, which is
quite large even by the DSS, which requires that log2 n ≥ 2048 [7].

The DSS also requires that

|p− q| > 2(log2 n)/2−100 =
√
n2−100.

Let us consider two sizes of an integer n meeting this standard. If log2 n ≈ 2048,
as required by the DSS, then |p− q| >

√
n2−100 ≈ 2924 [7]. If we suppose that

|p−q| is very near this lowerbound, then |p−q| ≈
√
n2−100. By Theorem 10, an

integer n with these properties would require less than
√
n2−200−7/4 = 2823+1/4

iterations. Note from the data tables that when (
√
p −√q)2 was near 240, i.e.

when the algorithm required roughly 240 iterations, the algorithm took about
30 minutes to succeed. Using the number of iterations per second given in Table
4, we can estimate that an integer n with log2 n ≈ 2048 and |p−q| > 2924 would
take at least 2815 seconds (about 6.9 · 10237 CPU years) to succeed.

On the other hand, if log2 n ≈ 512, then |p−q| > 2156 [7]. By Theorem 10, an
integer n with these properties would require less than

√
n2−200−7/4 = 255+1/4

iterations. Note from the data tables that when (
√
p −√q)2 was near 240, i.e.

when the algorithm required roughly 240 iterations, the algorithm took about
30 minutes to succeed. Using the number of iterations per second given in Table
4, we can estimate that an integer n with log2 n ≈ 512 and |p− q| ≈ 2156 would
take approximately 2234 processor seconds (about 645 CPU years) to succeed.

Although this amount of time seems infeasible, the RSA challenge number
RSA-768 mentioned above was factored with the GNFS in 3 calendar years
using approximately 1500 CPU years [15]. Thus, it seems that computations

14

of this size are now possible, although they have been accomplished so far only
through large-scale parallelization [15].

Conclusion We conclude that the minimum requirement for |p − q| given in
the DSS ensures that n is difficult to factor via a naive Phi-Factor approach,
i.e. starting from 1. However, by beginning the Phi-Finder algorithm so that
it starts its search with the first value beyond the |p − q| lower bound of the
standard, Phi-Finder can factor an RSA moduli constructed according to the
DSS standards, if |p− q| is too close to the minimum.

Furthermore, this problem cannot be solved by increasing the minimum
requirement for the size of |p − q|, as Phi-Finder can begin searching with the
first value beyond the standard lower bound for |p− q|, no matter how large the
lower bound is. Thus, we recommened that p and q are chosen at random so that
the event of |p− q| being too close to the minimum is sufficiently improbable.

Here we provide a very rough estimation of the probability of this event.
Note that if p and q are chosen at random from the interval (2m/2−1/2, 2m/2)
where m = log2 n, then once p is chosen, the probability of q being chosen within
a certain distance d of p is roughly

2d/(2m/2 − 2m/2−1/2) = 2d/
(

(2m/2)(1− 2−1/2)
)
.

Because |p− q| ≤ 220n1/4 (or slightly larger) is required for Phi-Finder to factor
n quickly, we then want to know the probability that d ≤ 220n1/4 = 2m/4+20.
We can estimate the probability of this occurring to be

P
(
d ≤ 2m/4+20

)
=

2 · 2m/4+20

(2m/2)(1− 2−1/2)
≈ 220−m/4.

Thus, as an example, if m ≈ 2048, the probability of randomly choosing primes
that are “too close together” is approximately 2−492, which is sufficiently im-
probable to conclude that n is difficult to factor using the Phi-Finder algorithm.

6 Comparison to Other Algorithms

Previously, the factors of an RSA modulus were chosen so that they were not too
close together for fear that trial division or Fermat Factorization might succeed.
Therefore, the Phi-Finder algorithm is compared with Fermat Factorization
below, and a comparison in runtimes is given in Tables 2 and 3. However, in
the case of these algorithms the words “too close together” refer to a much
smaller difference than that required to protect the modulus from factoring by
Phi-Finder.

In comparing these algorithm, it is also worth noting that Phi-Finder requires
almost no memory, merely the amount of memory needed to store n and bit shift
n. In contrast, the QS, GNFS, and trial division use a great deal of memory.
The QS and GNFS involve linear algebra phases which involve matrices of sizes

15

that are often 500, 000×500, 000 and larger. Trial division would require storing
all primes in the interval [q,

√
n], which is discussed in further detail below.

Another comparable factoring method uses a method due to Coppersmith
that factors n when enough bits of one of the prime factors of n are known [3].
First, we explain the relevance of Coppersmith’s known-bit attack.

6.1 Coppersmith’s Known-bit Attack

A method due to Coppersmith gives us the following result [3].

Theorem 12 (Coppersmith). Let n = pq have m bits. If the m/4 MSBs or
LSBs of p are known, then n can be factored in polynomial time.

When |p − q| < n1/4 = 2m/4, then
√
n has the same m/4-MSBs as p and

q and since
√
n is publically computable, Coppersmith’s algorithm provides a

polynomial time factorization of n. In the case when |p−q| < n1/4, the runtimes
in Tables 2 and 3 show that Phi-Finder factors n instantly.

Note that Coppersmith’s algorithm can still provide an efficient facorization
even if less than m/4 bits are known because we can guess the value of the
unknown bits and run the algorithm for each guess. For example, if the m/4−k
MSBs of one prime are known for some small positive integer k, then there
would be 2k different possibilities for those unknown bits, and so n could be
factored by running Coppersmith’s polynomial time algorithm no more than 2k

times.
However, this quickly becomes infeasible as missing knowledge of even k = 10

of the m/4 MSBs would require 210 = 1024 calls to Coppersmith’s algorithm.
In comparison, the runtimes in Tables 2 and 3 show that Phi-Finder succeeds
in less than one second when |p − q| ≈ 2m/4+10 for even a 3072-bit modulus,
and still succeeds in under 18 minutes even when |p− q| ≈ 2m/4+20.

6.2 Comparison to Fermat Factorization

Fermat factorization can also quickly factor n if p and q are too close together.
This is because if the factors of a modulus are too close together, then n = pq
can easily be expressed as the difference of two squares: n = x2 − y2, which
can then be factored as n = (x − y)(x + y) and therefore p and q are (x + y)
and (x− y). But how close must two primes be for their product to be quickly
factored this way?

Suppose we try to factor n = pq using Fermat Factorization. Then we want
integers x and y so that n = x2−y2, or, written another way, so that n+y2 = x2.
To accomplish this, we start with d

√
n e2, subtract n, and then check to see if

the difference, d
√
n e2−n, is itself a perfect square. If d

√
n e2−n is not a perfect

square, then we try positive integers i = 1, 2, 3, 4, ... with (d
√
n e+ i)2 − n until

it is a perfect square.
Note that this process is the same as checking to see if p and q are a certain

distance apart. To see that, observe that if (d
√
n e + i)2 − n = x2 and we find

the factorization n = pq = (d
√
n e+ i)2 − x2 = (d

√
n e+ i+ x)(d

√
n e+ i− x),

16

then p = d
√
n e + i + x and q = d

√
n e + i − x, and so we have p − q = 2x.

Thus, iterating i and checking to see whether or not (d
√
n e+ i)2−n is a perfect

square is equivalent to checking if p and q are separated by a distance of 2x, i.e.
|p − q| = 2x = 2

√
(d
√
n e+ i)2 − n. This equation allows us to solve for for i,

the number of iterations required, in terms of p and q.

Theorem 13. Let n = pq, a product of distinct primes. Then factoring n using
Fermat’s method requires b(√p−√q)2/2c iterations.

Proof.

2((d
√
ne+ i)2 − n)1/2 = |p− q|

4
(
(d
√
ne+ i)2 − n

)
= (p− q)2

4(d
√
ne+ i)2 − 4n = p2 − 2n+ q2

4(d
√
ne+ i)2 = p2 + 2n+ q2 = (p+ q)2

2(d
√
ne+ i) = p+ q

2(
√
n+ o(1) + i) = p+ q

2(i+ o(1)) =
√
p
2 − 2

√
n+
√
q
2 = (

√
p−√q)2

i = (
√
p−√q)2/2− o(1)

Thus, Fermat’s method requires b(√p−√q)2/2c iterations.

We emphasize that this is a naive version of Fermat’s algorithm, and versions
of the algorithm exist that are slightly faster than this naive approach [6]. It
is also important to note that the efficient success of Fermat’s method does
not depend on n being the product of two primes. If n can be expressed as a
product fg and f − g is small, then n will be factored efficiently regardless of
the structure of f and g. The Phi-Finder algorithm will succeed quickly only if
n is a product of two primes that are close together. If n is not the product of
two primes that are close together then the Phi-Finder method will still factor
n eventually but with a possibly enormous runtime.

6.3 Comparison to Trial Division

During trial division, one divides n by each consecutive prime less than
√
n

until a divisor of n is found. This process is guaranteed to produce a factor of n
because n must have a prime factor less than its square root. Thus, succeeding
using trial division requires that we divide n by each prime in the interval [q,

√
n].

We can use the prime number theorem to estimate that the probability of a
randomly chosen integer from that interval being prime is roughly 1/ ln(

√
n) =

2/ lnn. Note that the probability of an integer being prime if it is chosen near
q is closer to 1/ ln q, which is greater than 2/ lnn because q <

√
n. Thus,

(
√
n−q)(2/ lnn) gives an underestimate for the number of primes in the interval,

and hence the number of trial divisions necessary.

17

Now we can estimate the number of primes in this interval that we need to
check. The estimated number of trial divisions can be expressed as follows:

2(
√
n− q)

lnn
=

2
lnn

(
√
q(
√
p−√q)).

This form allows us to readily see that trial division requires more iterations
than the Phi-Finder algorithm. Since we have assumed that p and q are close
together, we can assume that 4 > p/q. But this implies 2

√
q >

√
p, which in

turn implies
√
q >
√
p−√q. Thus, we know that

√
q(
√
p−√q) > (

√
p−√q)2.

We also have that log2(pq) > ln(pq), which only further shows that

√
q(
√
p−√q)/ln(pq) > (

√
p−√q)2/log2(pq).

Thus, trial division requires more operations than our algorithm, as long as
4q > p > q. Keep in mind that this analysis does not take into account the
enormous difficulty of finding and storing all of the primes between

√
n and q,

which is totally infeasible.

6.4 Comparison to the “qsieve” and “factor” commands
in SAGE

The open source computer algebra system SAGE has a highly optimized imple-
mentation of the Quadratic Sieve (QS) as well as a factoring command “factor,”
that uses a variety of algorithms [1]. Note from Table 2 that Phi-Finder can
factor 128-bit integers in under 30 minutes even when |p− q| is large. However,
other factoring methods are so effective on integers of this small size that Phi-
Finder is not useful here: SAGE’s factor command factored these in less than
one second, regardless of the value |p− q|, see [1].

The qsieve command in SAGE, which accepts as inputs only 140-bit integers
and larger, factored integers up to 260 bits in length within 12 minutes, regard-
less of the size of |p − q|. The runtimes given in Table 1 confirm that the size
of |p − q| does not affect the runtime of the Quadratic Sieve. Integers of four
different bit-lengths were factored : 200, 220, 240, and 260. For each bit-length,
one integer was factored for which |p− q| was very small, and one for which it
was very large. The QS took roughly the same amount of time for integers of
the same bit-length, despite the different sizes of |p− q|.

In contrast, for numbers of the sizes listed in Table 1, Phi-Finder succeeded
instantly for the integers for which |p − q| was small, whereas the QS took as
long as ten minutes. However, Phi-Finder would take at least 252 seconds (more
than 1.4 · 108 CPU years) to factor the integers with large |p− q|, whereas the
QS took less than twelve minutes.

Clearly the QS factors n faster than Phi-Finder for integers n = pq of this
size (between 200 and 260 bits in length) when |p − q| is not very small, but
integers for which log2 n = 260 are much smaller than RSA moduli, which are
required by the DSS to have log2 n ≥ 2048 [7]. For integers n with log2 n ≥ 2048,
even the GNFS requires an infeasible amount of time to factor n, regardless of

18

whether or not n has any special structure [15]. In contrast, Phi-Finder can
quickly factor integers n = pq of this large size in only minutes, if |p− q| is very
small.

log2(n) log2(p− q) log2(
√
p−√q)2 Time (sec)

199.029 57.9978 0.0000 14.90
199.023 91.7761 82.0405 11.30
220.261 58.0000 0.0000 40.23
220.268 99.7890 87.4440 45.02
240.000 70.0000 0.0000 187.51
240.000 115.9827 109.96508 176.10
260.000 75.0000 0.0000 715.86
260.000 125.34312 118.68612 594.37

Table 1: Run times for the Quadratic Sieve as implemented on Sage.

7 Acknowledgements

Many thanks to Dr. Gregory V. Bard of Fordham University, the author’s thesis
advisor, for much advice in research and writing as well as many revisions of
the paper. Thanks also to the Faculty Research Council of Fordham College of
Arts and Sciences at Rose Hill for a faculty research grant given to Dr. Bard
in the summer of 2009, under which the author of this thesis was supported.
The author is also indebted to Dr. Donna Heald, Associate Dean for Science
Education at Fordham University for funding in the summer of 2009.

Thanks to Dr. Lawrence C. Washington of the University of Maryland at
College Park for observing that Coppersmith’s algorithm can be used if |p− q|
is small enough (and therefore p and q share many of their MSBs with

√
n).

Thanks also to Dr. William Hart of Warwick University for help with Fermat’s
factorization method. We thank Dr. William Stein of the University of Wash-
ington in Seattle and National Science Foundation Division of Mathematical
Sciences Grant No. DMS-0821725 for the use of the computers in running the
algorithms. Finally, the author is grateful to the entire Mathematics Depart-
ment at Fordham College Rose Hill for support and instruction in many aspects
of mathematics.

References

[1] SAGE. Software Package. Available at http://www.sagemath.org/.

[2] M. S. Manasse A. K. Lenstra, H. W. Lenstra Jr. and J. M. Pollard. The number
field sieve. Preprint, December, 1989.

[3] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology, 10:233–260, 1997.

19

[4] Yousef Bani Hammad. Novel methods for primality testing and factoring. Disser-
tation for a PhD in Mathematics at Queensland University of Technology, 2005.

[5] H. W. Lenstra Jr. Factoring integers with elliptic curves. Ann. of Math.,
126(2):649–673, 1987.

[6] James McKee. Speeding fermat’s factoring method. Math. Comp, (68):228–1729,
1999.

[7] National Institute of Standards and Technology (NIST). FIPS publication 186-3:
Digital signature standard (DSS), June 2009.

[8] J M Pollard. A monte carlo methods for factorization. BIT, (15), 1975.

[9] J.M. Pollard. Theorems on factorization and primality testing. Proc. Cambridge
Phil. Soc., 76:521–528, 1974.

[10] Carl Pomerance. The quadratic sieve factoring algorithm. In Advances in cryp-
tology, pages 169–182, 1984.

[11] A. Shamir R. Rivest and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

[12] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26:1484–1509,
1997.

[13] R D Silverman. Massively distributed computing and factoring large integers.
Communications of the ACM, (34):95–103, 1991.

[14] Robert D. Silverman. The multiple polynomial quadratic sieve. Mathematics of
Computation, 1987.

[15] Jens Franke Arjen K. Lenstra Emmanuel Thom Pierrick Gaudry Peter L. Mont-
gomery Dag Arne Osvik Herman Te Riele Andrey Timofeev Paul Zimmermann
Thorsten Kleinjung, Kazumaro Aoki. Factorization of a 768-bit rsa modulus,
February.

[16] H C Williams. A p+1 method of factoring. Mathematics of Computation, (39),
1982.

[17] Song Y. Yan. Cryptanalytic Attacks on RSA. Springer-Verlag, 2008.

20

Appendix I: Probabalistic Analysis of the Order of 2

An additional two experiments were carried out to test Conjectures 7 and 8, each
consisting of 1,000,000 trials. In both experiments, each trial consisted of generating
a prime q, calculating the order of 2 mod q, and then checking whether ordq 2 was
greater than n1/2. In both experiments it was found that ordq 2 > n1/2 was true for
all 1,000,000 trials.

The only difference in the two experiments was the size of the primes generated. In
the first experiment, each trial involved generating a prime at random in the interval
(2, 245). In the second experiment, the interval used was (2, 247). Again we emphasize
that these sizes of primes are much smaller than the size of a prime used in an RSA
modulus.

Confidence intervals: Given the data from these experiments, we would like
to compute some confidence intervals for the probability p of the conjecture failing for
a randomly selected prime. Now we would like to know that for some upper bound U
we have P (p ≥ U) = 1 − α, i.e. that p ∈ (0, U] with 100(1 − α)% confidence. Note
that, since p is the probability of the conjecture failing, then 1−p is the probability of

a success occurring, and (1−p)10
6

is the probability of 1,000,000 consecutive successes
occurring.

(1− p)10
6
≥ α

106 log10 (1− p) ≥ log10 α

log10 (1− p) ≥ 10−6 log10 α

(1− p) ≥ α1010−6

1− α1010−6
≥ p

Thus, we have that p ≤ 1− α1010−6
with 100(1− α)% confidence, where p is the

probability of a prime violating the conjecture. Using this calculation,we give several
upperbounds U for p as well as the confidence of each U in the table below. Note that
since both experiments have the same data (1,000,000 trials with 1,000,000 successes),
these confidence intervals apply for both experiments, i.e. for primes of both sizes.

Confidence Upperbound for p Lowerbound for 1− p
99.99% 0.00001381 0.999986

99.9% 0.00001151 0.99998849

99% 0.000009210 0.99999079

90% 0.000006907 0.999993093

Appendix II: A More Rigorous Analysis of the Random
Selection of RSA Primes

A rough probabilistic estimate is given at the end of Section 5 suggesting that random
selection of primes for an RSA modulus guarantees with sufficiently high probability
that the modulus will be difficult to factor using Phi-Finder. Here we provide a more
rigorous analysis of this probability.

Recall that we are randomly choosing two primes p, q in an interval, call the interval
(a, b), and we want to calculate the probability that |p−q| ≤ D for some pre-determined
distance, D. This requires counting the number of primes in the interval (a, b).

21

Approximating π(n): Since we are counting the number of primes in the
interval, we would like a function that approximates the numbers of primes in the
interval (a, b), and we would like this function to be simpler than the prime number
function π(n) = n/ lnn to make the calculations simpler. We estimate π(n) ≈ π̂(n) =
n/ ln ((a+ b)/2) = nK (where K = 1/ ln((a + b)/2)), i.e. we will use the density
of primes in the center of the interval as an estimate for the density of the primes
over the whole interval. To give bounds on the error of this estimation we need only
check the error at the interval boundaries. This is because π(n) is a monotonically
increasing function and so the worst that the error of π̂(n) can be is at the extremes
of the interval, i.e. at a and b.

A standard interval for the selection for RSA primes given in [7] is the interval
(21023.5, 21024). We calculate the error for π̂(n) for this interval as follows.

π̂(21023.5) = 21023.5/ ln ((21023.5 + 21024)/2)

= 21023.5/ ln (21022.5 + 21023)

= 21023.5/ ln (21022.5(1 + 2.5))

= 21023.5/(ln (21022.5) + ln (1 + 2.5))

= 21023.5/(1022.5 ln 2 + ln (1 + 2.5))

= 21023.5/(1022.5 ln 2 + .881373587)

Now we compute our absolute error as

π(21023.5)− π̂(21023.5) = 21023.5/(1023.5 ln 2)− 21023.5/(1022.5 ln 2 + .881373587)

= 21023.5 [1/(1023.5 ln 2)− 1/(1022.5 ln 2 + .881373587)]

= 21023.5

»
(1022.5 ln 2 + .881373587)− (1023.5 ln 2)

(1023.5 ln 2)(1022.5 ln 2 + .881373587)

–
= 21023.5

»
.881373587− ln 2

(1023.5 ln 2)(1022.5 ln 2 + .881373587)

–
= 21023.5

»
.5429440881

503433.170

–

Finally, we compute our relative error at the interval’s lower boundary to be

π(21023.5)− π̂(21023.5)

π(21023.5)
= 0.0007651 = .07651%

and a similar calculation gives our relative error at the interval’s upper boundary

π(21024)− π̂(21024)

π(21024)
= −0.0002231 = −.02231%

Thus, we see that π̂(n) provides an accurate approximation of π(n) in the given inter-
val. Now we use our approximation π̂(n) = Kn to approximate the number of primes
in our interval that satisfy |p− q| ≤ D.

To do this we will count the number of pairs of primes in (a, b) that satisfy |p−q| ≤
D and divide by the total number of pairs of primes in (a, b). First we divide our
interval (a, b) into three subintervals, (a, a+D); (a+D, b−D); and (b−D, b). We do
this because the number of primes that we want to count changes near the boundaries:
for example, if p is chosen in the interval (a+D, b−D) then q can be any prime within

22

D of p. However, if p is chosen in either of the near-boundary intervals, for example
(a, a + D), then q cannot be chosen if it is less than a, and so the interval around p
from which q can be chosen shrinks from (p−D, p+D) to (a, p+D).

The first prime, p, must be chosen from (a, b) = (a, a+D)∪(a+D, b−D)∪(b−D, b).
However, we have shown that the number of possible primes q then depends on which
of the three subintervals that p is chosen from. Since (a + D, b − D) is the largest
subinterval by far, it will dominate the probability. Note that there are

π(b−D)− π(a+D) ≈ π̂(b−D)− π̂(a+D)

= K(b−D)−K(a+D)

= K(b− a− 2D)

primes in the interval (a+D, b−D). Similarly, there are approximately K(b)−K(a) =
K(b− a) primes in the entire interval (a, b), and so the probability of p being selected
from (a+D, b−D) at random is given by

P{p ∈ (a+D, b−D)} =
K(b− a− 2D)

K(b− a)
=
b− a− 2D

b− a = 1− 2D

b− a

Furthermore, the number of primes q within the distance D of p is then K(p+D)−
K(p − D) = 2KD. Thus, the probability of q being chosen out of the interval (a, b)
such that q is within D of p, given that p ∈ (a+D, b−D), is then 2KD/(K(b− a)) =
2D/(b− a). Therefore, the probability that p ∈ (a+D, b−D) and |p− q| ≤ D is then

Pp ∈ (a+D, b−D) ∧ |p− q| ≤ D =

„
1− 2D

b− a

«
2D

b− a

Now note that the probability of p being selected randomly from one of the outer
intervals is given by

P{p ∈ (a, a+D) ∪ (b−D, b)} = 1− P{p ∈ (a+D, b−D)} =
2D

b− a

In practice, b− a is on the order of n1/2 and D is on the order of 220n1/4, and so this
probability is on the order of 220n−1/4. Since n ≈ 22048, this probability is roughly
2−492, and so the case where p is not in the dominant interval is negligible.

Hence, we estimate that the probability of |p− q| ≤ D when p and q are chosen at

random is then
“

1− 2D
b−a

”
2D
b−a

. For example, using the standard values a = 21023.5, b =

21024, and D ≤ 2532, we have

P{|p− q| ≤ 2532} =

„
1− 2 · 2532

b− a

«
2 · 2532

b− a

=

„
1− 2533

21024 − 21023.5

«
2533

21024 − 21023.5

= 2−490.5(
√

2 + 1)−
“

2−490.5(
√

2 + 1)
”2

≈ 2−490.5(
√

2 + 1) ≈ 2−489.2284

which is sufficiently improbable.

23

log2(n) log2(p− q) log2(
√
p−√q)2 Phi-Finder Fermat

128 39.9910 14.0447 0.00 0.00

128 44.9253 23.9830 0.02 0.35

128 45.4076 25.2188 0.04 0.85

128 46.6700 27.4590 0.20 3.93

128 47.5329 29.0746 0.63 10.88

128 48.8298 31.7992 3.84 77.80

128 49.4470 33.0060 9.20 179.98

128 50.2547 34.8579 34.83 609.72

128 51.4826 37.1537 162.26 >2000.00

128 52.1715 38.4032 374.33 >2000.00

128 53.17184 40.34585 1524.40 >2000.00

128 54.59147 43.255947 >2000.00 >2000.00

512 139.957 21.9631 0.00 0.13

512 140.999 24.1443 0.02 0.53

512 141.546 25.5872 0.04 1.39

512 142.361 26.7307 0.10 3.18

512 143.795 29.9616 0.96 30.56

512 144.303 30.9417 2.08 60.22

512 145.496 33.0012 7.99 237.49

512 146.885 36.003 72.12 1904.23

512 147.665 37.8254 217.65 > 2000.00

512 148.512 39.0332 522.63 > 2000.00

512 149.266 40.6691 1552.13 > 2000.00

1024 267.498 21.0608 0.01 0.08

1024 268.788 24.0035 0.03 0.68

1024 269.543 25.1192 0.04 1.75

1024 270.818 27.7879 0.29 8.98

1024 271.472 29.2853 0.82 25.94

1024 272.528 31.1892 2.96 96.98

1024 273.978 34.1086 22.48 762.74

1024 274.662 35.4257 52.95 1867.15

1024 275.311 37.0332 195.69 > 2000.00

1024 276.557 39.355 774.27 > 2000.00

1024 277.603 41.2856 > 2000.00 > 2000.00

Table 2: Run times are in seconds.

24

log2(n) log2(p− q) log2(
√
p−√q)2 Phi-Finder Fermat

2048 521.098 16.2379 0.01 < 0.01

2048 522.026 18.5101 0.01 0.02

2048 523.382 20.9696 0.01 0.12

2048 524.428 23.0637 0.03 0.53

2048 525.033 24.1835 0.05 1.11

2048 526.75 27.5525 0.34 12.10

2048 527.754 29.5410 1.33 47.81

2048 528.787 31.9979 7.80 261.97

2048 529.927 33.9446 28.95 998.85

2048 530.334 34.8726 54.35 1940.36

2048 531.217 36.8897 227.87 >2000.00

2048 532.395 38.9955 947.28 >2000.00

2048 533.487 41.3567 >2000.00 >2000.00

3072 777.592 17.3730 0.04 < 0.01

3072 778.555 19.4147 0.04 0.06

3072 779.913 22.1133 0.04 0.35

3072 780.129 22.7074 0.06 0.57

3072 781.949 26.1382 0.22 6.15

3072 782.964 28.4105 0.95 30.50

3072 783.688 29.4796 1.87 60.35

3072 784.11 30.5733 3.90 125.46

3072 785.755 33.6979 33.69 1133.10

3072 786.262 34.6330 61.89 > 2000.00

3072 787.399 36.9869 333.21 > 2000.00

3072 788.187 38.6777 1051.78 > 2000.00

3072 789.359 41.0980 > 2000.00 > 2000.00

Table 3: Run times are in seconds.

log2(n) Iterations per second integers tested as φ(n) per second
128 7161500 909511000
512 2107880 1077130000
1024 811058 829713000
2048 281713 576667000
3072 112164 344455000
4096 76407 312889000

Table 4: Number of Iterations run per second.

25

