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Network Analysis
Graphs can model everything!

Graph, G
V, nodes
E, edges

Erdős Number
Facebook friends
Twitter followers
Search engines
Amazon/Netflix rec.
Protein interactions
Power grids
Google Maps
Air traffic control
Sports rankings
Cell tower placement
Scheduling
Parallel programming
Everything
Kevin Bacon
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Network Analysis
Recommending facebook friends

Each node is a user, the graph has 
edges between facebook friends."
"
How should Facebook determine 
which users to recommend as new 
friends to the node colored black?
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Network Analysis
PageRank
One of the best methods for 
determining FB friends / Twitter 
followers is “seeded PageRank”"
"
A diffusion process that leaks dye 
from target node (seed) to the rest 
of the graph.
More dye = higher probability that 
node is your friend!
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     "
     ~ O(109) #nodes
     ~ O(1010) #edges = |E|

And real-world
networks are

Nonzero dye on every node (nonzero probability
you are friends with each person) -> must look at 
whole graph to be accurate!

Big networks pose a big problem for 
applications that need fast answers"
(like “which users should I befriend?”)

Mo’ data, mo’ problems
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State-of-the-art c. 2012: “Wild West”
There exist “fast” methods for seeded PageRank,
but they were “compute first, ask questions later”*"
(or not at all!)
"
They lacked principled mathematical theory 
guaranteeing these fast approximations would be 
accurate."
"
But fast approximate methods “seemed to work”
"
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Localization in seeded PageRank

Seed

Newman’s 
netscience graph

379 vertices
924 edges

 x is “zero” on most of the nodes!

In connected graphs 
seeded PageRank is 
non-zero everywhere."
"
But in practice…
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Solution to Big Data: localization

Local algorithms look at just the graph region near 
the nodes of interest


Localization occurs when a global object can be 
approximated accurately by being precise in only 
a small region
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Weak and strong localization

Weak localization: an approximation that"
is sparse, and accurate enough to use in"
applications that tolerate low accuracy"
(clustering!)"

"
Strong localization: an approximation that"
is sparse, and accurate enough for use in any"
application.
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PR

State of the art, 2016/4/22

HK

Weak 
localization

Strong 
localization

Gen!
Diff



  [Nassar, K., Gleich, 
2015]

"
 [K. & Gleich 2014]

"
 [Gleich & K., 2014]


     In preparation!




           ?
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Weak localization
in diffusions
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General diffusions: intuition
A diffusion propagates “rank” from a seed across a graph.

= high!
= low! diffusion value!seed
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Graph Matrices
Adjacency matrix, A
 


Random-walk transition matrix, P

Aij = 1, if node i links to node j
0 otherwise

where       is the outdegree of node j.dj

Column stochastic!  i.e. column-sums = 1

P ij = Aji/dj
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P = AT D�1 where       is the diag degree matrix.D



General diffusions: intuition
A diffusion propagates “rank” from a seed across a graph.

seed

General diffusion vector

p0c0 p1c1 p2c2 p3c3++ + + …f =

f =
X

k=0

ck Pk ŝ = f (P)ŝ
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Local Community Detection
Given seed(s) S in G, find a community that contains S.

seed

high internal, low 
external connectivity !

“Community” ?
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Low-conductance sets are communities

conductance( T ) =  cut(T)


min( vol(T), vol(Tc) )

conductance(comm) = 
39/381 = .102

~ “ chance a random edge 
touching T also exits T ”
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Graph diffusions find low-conductance sets

seed

= high!
= low! diffusion value!

= local community / !
   low-conductance set!
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Use a diffusion for good conductance sets

1.  Approximate f so
2.  Then “sweep” for best conductance set.

Sweep:
1.  Sort diffusion vector so
2.  Consider the sweep sets S(j) = {1,2,…,j}
3.  Return the set S(j) with the best conductance.


f1/d(1) � f2/d(2) � · · ·

kD�1(f � f̂)k1  " , f � f̂ � 0
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Weak localization in diffusions

1.  Approximate f sokD�1(f � f̂)k1  " , f � f̂ � 0

Weak localization:
When an approximation of f satisfies"
   and is sparse, the diffusion"
is weakly localized."

"
Basically: “get just the biggest entries sort of correct”!

kD�1(f � f̂)k1  "
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Diffusions used for conductance
Personalized PageRank (PPR)"
"
Heat Kernel (HK)"
"
Time-dependent PageRank (TDPR)"


f =
1X

k=0

↵k Pk s̃

f =
1X

k=0

tk

k ! P
k s̃

Various diffusions 
explore different 
aspects of graphs.
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PR

Diffusions: conductance & algorithms

HK

good
conductance

fast 
algorithm

Gen!
Diff

Local Cheeger Inequality"
[Andersen,Chung,Lang 06]

[Andersen Chung Lang 06]
“PPR-push” is O(1/(ε(1-𝛼)))

Local Cheeger Inequality 
[Chung ’07]

[K., Gleich ’14]
“HK-push” is O(etC/ε )

Open question
[Avron, Horesh ’15]
Constant-time heuristically

[Ghosh et al. ’14] on L;"
open question for general f

In preparation with Gleich 
and Simpson

TDPR
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Our algorithms for

"
- constant time on any graph,
 - heat kernel:"
 - general:       

 
- accuracy:
- our experiments show heat kernel outperforms
 PageRank on real-world communities

Õ( e1

" )

f̂ ⇡ f (P)ŝ

kD�1(f � f̂)k1  ✏

O( N2

" )
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General diffusion: Algorithm Intuition
From parameters ck, ε, seed s …!

Starting from here…





How to end up here?

p0 p1 p2 p3

seed

 …

p0c0 p1c1 p2c2 p3c3++ + + …
f =

X

k=0

ck Pk ŝ = f (P)ŝ

“residual staging area”:
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General diffusion: Algorithm Intuition

p0c0 p1c1 p2c2 p3c3++ + + …
f =

X

k=0

ck Pk ŝ = f (P)ŝ
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Algorithm Intuition

Begin with mass at seed(s)
in a “residual” staging area, r0

The residuals rk hold mass that 
is unprocessed – it’s like error


Idea: “push” any entry
rk(j)/ dj > (some threshold) 

r0 r1 r2 r3

seed

 …

p0 p1 p2 p3++ + + …c0 c1 c2 c3

25




Thresholds

ERROR equals weighted sum
of entries left in the vectors rk

à  Set threshold so “leftovers” 

sum to <  

r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …

entries < threshold 

Threshold for stage rk is"


c0 c1 c2 c3

Then kD�1(f � f̂)k1  "

"/

0

@
1X

j=k+1

cj

1

A

"
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General diffusions: conclusion
THM: For diffusion coefficients ck >= 0 satisfying 



Our algorithm approximates the diffusion f

on an undirected graph so that 

in work bounded by

Constant for any inputs!
(If diffusion decays fast)

1X

k=0

ck = 1 and

kD�1(f � f̂)k1  ✏

O(2N2/✏)

NX

k=0

ck  ✏/2 “rate of 
decay”
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Proof sketch

1. Stop pushing after N terms. 

O(2N2/✏)

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 

4. Each rk sums to <= 1
(each push is added to f, which sums to 1)

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)


N�1X

k=0

mkX

t=1

rk (jt )(2N)/✏
N�1X

k=0

mkX

t=1

d(jt )

mkX

t=1

rk (jt )  1
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Strong localization
in seeded PageRank
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Given a seed and a graph

Seeded PageRank is defined 
as the solution to "
"
"
where      is the “teleportation 
parameter” in (0,1).


es P = AT D�1

↵

(� � ↵P)x = (1 � ↵)es

Strong localization: if we can approximate x so that"
and the approximation is sparse, x is strongly localized.

Strong localization in seeded PageRank

kx � x̂k1  "
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An example on a bigger graph
Crawl of flickr from 2006: ~800K nodes, 6M edges,"
seeded PageRank with     = 0.5

An example on a bigger graph
Crawl of flickr from 2006 ~800k nodes, 6M edges, alpha=1/2
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X-axis: node index
Y-axis: value at that index in true PageRank vector
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Conditions for localization?
When is localization in diffusions possible?

We’ve observed localization in real world graphs.
Does it always occur?
"
Are there graphs in which no localization occurs?

If localization occurs *everywhere* then our result is 
less meaningful...
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Strong localization can be impossible
Consider a star graph

Values in the PageRank vector 
seeded on the center node.
Essentially everything is needed 
to be non-zero to get a global 
error bound.


1
1 + ↵

↵

(1 + ↵)(n � 1)
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Strong localization can be impossible
Consider a star graph

How many entries in x can we"
round to zero before its"
error is too large?

This:"
"
requires

Values in the PageRank vector 
seeded on the center node.
Essentially everything is needed 
to be non-zero to get a global 
error bound.


kx � x

⇤k1  "

1
1 + ↵

↵

(1 + ↵)(n � 1)

1 + n
⇣

1 � "(1+↵)
↵

⌘
 nnz(x⇤)
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Strong localization can be impossible
THM: (Nassar, K., Gleich)  Seeded PageRank is non-local 
on any complete bipartite graphs (generalizing star graphs)."
"
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Strong localization can be impossible
THM: (Nassar, K., Gleich)  Seeded PageRank is non-local"
on any complete bipartite graphs (generalizing star graphs)."
"
Why?"
Fact: P is complete-bipartite iff eigenvalues = {-1,0,1}.
PageRank is really a matrix function, 
Fact: a matrix function is equiv to interpolating polynomial"
"
"
Only 3 eigenvalues      p(x) is degree 2  (!)

f (x) = (1 � ↵x)�1.

p(�i ) = f (�i ) ! p(P) = f (P)

(� � ↵P)�1ej = f (P)ej = (c0� + c1P + c2P2)ej
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When is localization possible?
Graphs exist where seeded"
PageRank has no localized"
behavior (complete bipartite)"
"
& graphs exist with"

localized behavior everywhere!
( degree <= constant, or log log(n) )
"
So what properties can
determine localization
in seeded PageRank?
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Skewed degree sequences

"



"
Log-log scale"
"
1.1M nodes
3M edges"
p ~ 0.71

[Yang and Leskovec, ICDM 2015]

Graphs where the k-th largest degree  d(k )  max(dk�p
, �)

(     is min degree,"
  d  is max degree
  p  is decay exponent )

�Youtube degree nodes
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Strong localization in personalized 
PageRank Vectors

Due to the maximum degree d, this does not say anything about traditional 
power-law graphs (e.g. the Pareto case)

Theorem (Nassar, K., Gleich):

Let a graph have max-degree d , min-degree �, n nodes,

and let p be the decay exponent. Then Gauss Southwell

computes x" with accuracy kx � x"k
1

 ", and the number

of non-zeros in x" is no greater than: min

⇢
n ,

1

�
Cp(1/")

�
1�↵

�

where Cp =

(
d(1 + log d) p = 1

d
⇣

1 +

1

1�p (d (1/p)�1 � 1)

⌘
otherwise
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We study the behavior of the "
Gauss-Southwell or push algorithm 
for computing PageRank
•  residual = remaining rank/dye to assign
•  solution = assigned rank/dye


Algorithm
1.  pick node with most residual dye
2.  assign dye to node
3.  update residual dye on neighbors, 
4.  then repeat.

Strong localization in personalized 
PageRank Vectors (sketch)
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Coordinate relaxation for PageRank
Approximating

Initial solution and residual:"
Iterative updates: first pick entry of residual, j

- update solution:
- update residual:"

"
"
KEY:  non-zeros in solution"

bounded by number of iterations, k+1


x

(0) = 0, r

(0) = (1 � ↵)s

x

(k+1) = x

(k ) + rj · ej

(� � ↵P)x = s̃

r

(k+1) = s̃ � (� � ↵P)x(k+1)

= r

(k ) � rjej + rj↵Pej
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PageRank Convergence: error & residual
Approximating a solution to

residual and error satisfy




"
for any sub-multiplicative matrix norm ||  || ."


(� � ↵P)x = s̃

r

(k ) = s̃ � (� � ↵P)x(k )

= (� � ↵P)x � (� � ↵P)x(k )

(� � ↵P)�1
r

(k ) = (x � x

(k ))

kx � x

(k )k  k(� � ↵P)�1kkr

(k )k
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PageRank Convergence: residual bound
Approximating a solution to
Error satisfies
"


(� � ↵P)x = s̃

kx � x

(k )k  k(� � ↵P)�1kkr

(k )k

Initial solution and residual:
Update residual:


x

(0) = 0, r

(0) = (1 � ↵)s
r(k+1) = r(k ) � rjej + rj↵Pej

kr(k+1)k1  kr(k ) � rjejk1 + krj↵Pejk1

 kr(k )k1 � rj + |rj↵|kPejk1

 kr(k )k1 � rj + |rj↵|
 kr(k )k1 � rj (1 � ↵)

Residual nonnegative

Triangle inequality

P is column-stochastic
Residual nonnegative
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PageRank Convergence: residual bound
Approximating a solution to
Error satisfies
"


(� � ↵P)x = s̃

kx � x

(k )k  k(� � ↵P)�1kkr

(k )k

Initial solution and residual:
Residual norm:
Assume we chose rj to be at least as big as the average 
magnitude of the residual entries. Then


Bounding                -- use the skewed degree seq!



x

(0) = 0, r

(0) = (1 � ↵)s
kr(k+1)k1  kr(k )k1 � rj (1 � ↵)

(definition of average)rj � kr(k )k1/nnz(r(k ))

nnz(r(k ))
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PageRank Convergence: the weeds, brief
Degree sequence assumption:"
"
enables us to prove:"
"
"
"
                  [ .... skipping the thickest weeds .... ]"
"
which enables a bound on residual decay!


(recall that                    and     is min degree)

d(t)  d · t�p

nnz(r(k ))  Cp + �k

kr(k+1)k1  (1 � ↵)
�
(�(k + 1) + Cp)/Cp

��(1�↵)/�

Cp ⇡ d log d � 45




Strong localization in personalized 
PageRank Vectors (repeated)

Theorem (Nassar, K., Gleich):

Let a graph have max-degree d , min-degree �, n nodes,

and let p be the decay exponent. Then Gauss Southwell

computes x" with accuracy kx � x"k
1

 ", and the number

of non-zeros in x" is no greater than: min

⇢
n ,

1

�
Cp(1/")

�
1�↵

�

where Cp =

(
d(1 + log d) p = 1

d
⇣

1 +

1

1�p (d (1/p)�1 � 1)

⌘
otherwise

Only Cp depends on n, the rest are constants!
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 [Gleich & K. 2014]

"
 [Gleich & K., 2014]
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Netscience −− PageRank Solution Paths

f =
X

k=0

ck Pk ŝ = f (P)ŝ

Diffusion paths
AptRank:

Adaptive diffusions
(K. & Gleich) (Jiang, K., Gleich, Gribskov)
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