A sub-linear method for computing columns of functions of sparse matrices

Kyle Kloster and David F. Gleich

Purdue University

March 3, 2014

Supported by NSF CAREER 1149756-CCF

Overview

1. $f(\mathbf{A})$: problem description and applications
2. Description of "sub-linear" results
3. The Algorithm for $f(\mathbf{A}) \mathbf{b}$
4. Intuition for proof
5. Experiments on real-world social networks

Functions of Matrices: background

We can apply most functions, e.g. $f(x)=\cos (x)$, to any square matrices \mathbf{A} if f is defined on the eigenvalues of \mathbf{A}. One definition: Taylor series!

$$
\begin{aligned}
& \cos (x)=\frac{1}{0!}+\frac{-x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots \\
& \cos (\mathbf{A})=\frac{\mathbf{1}}{0!}+\frac{-\mathbf{A}^{2}}{2!}+\frac{\mathbf{A}^{4}}{4!}+\cdots
\end{aligned}
$$

Then we can think of $f(\mathbf{A}) \mathbf{b}$ as the action of the operator $f(\mathbf{A})$ on \mathbf{b}, or as a diffusion on a graph underlying the matrix \mathbf{A}.

Functions of Matrices: applications

Action:

$$
\begin{array}{ll}
f(x)=e^{x}: & \frac{d \mathbf{x}}{d t}=\mathbf{A x} ; \mathbf{x}(0)=\mathbf{x}_{0} \\
\text { solution: } \mathbf{x}(t)=\exp \{t \mathbf{A}\} \mathbf{x}_{0}
\end{array}
$$

$f(x)=x^{1 / p}: \quad \mathbf{P}(t)$ transition matrix for Markov process
$\mathbf{P}(1)$ describes process over a year; $\mathbf{P}^{1 / 12}$ for a month

Functions of Matrices: applications

Action:

$$
f(x)=e^{x}: \quad \frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x} ; \mathbf{x}(0)=\mathbf{x}_{0}
$$

$$
\text { solution: } \mathbf{x}(t)=\exp \{t \mathbf{A}\} \mathbf{x}_{0}
$$

$f(x)=x^{1 / p}: \quad \mathbf{P}(t)$ transition matrix for Markov process
$\mathbf{P}(1)$ describes process over a year; $\mathbf{P}^{1 / 12}$ for a month
Diffusion:
$f(x)=(1-\alpha x)^{-1}: \quad$ the resolvent yields the PageRank diffusion: $f(\mathbf{P}) \mathbf{e}_{i}$ interpreted as nodes' importance to node i.
$f(x)=e^{t x}: \quad \quad e^{t \mathbf{P}} \mathbf{e}_{i}$, the heat kernel diffusion, offers an alternative ranking of nodes' importance

Parameters of $f(\mathbf{A}) \mathbf{b}$

A:
■ Original motivation: $\mathbf{A}=$ a normalized version of an adjacency matrix from a social network; the Laplacian or random-walk matrix. Sparse, small diameter, stochastic, degree distribution follows power-law
■ Generalized: any nonnegative \mathbf{A} with $\|\mathbf{A}\|_{1} \leq 1$.
b:
■ Originally $\mathbf{b}=\mathbf{e}_{i}$, i.e. compute a column $f(\mathbf{A}) \mathbf{e}_{i}$

- Generalized: b can be any sparse, stochastic vector $f(\cdot)$:
- Originally $f(x)=e^{x},(1-\alpha x)^{-1}$

■ Generalized: can be any function decaying "fast enough"

Columns of the Matrix Exponential

$\exp \{\mathbf{A}\}$ used for link-prediction, node centrality, and clustering. Why?

$$
\exp \{\mathbf{A}\}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k}
$$

- $\left(\mathbf{A}^{k}\right)_{i j}$ gives the number of length- k walks from i to j, so...

■ Large entries of $\exp \{\mathbf{A}\}$ denote "important" nodes / links
■ Used for link-prediction, node ranking, clustering

Columns of the Matrix Exponential

$\exp \{\mathbf{A}\}$ used for link-prediction, node centrality, and clustering. Why?

$$
\exp \{\mathbf{A}\}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k}
$$

- $\left(\mathbf{A}^{k}\right)_{i j}$ gives the number of length- k walks from i to j, so...

■ Large entries of $\exp \{\mathbf{A}\}$ denote "important" nodes / links
■ Used for link-prediction, node ranking, clustering

- $\exp \{\mathbf{A}\}$ is common, but other $f(\mathbf{A})$ can be used:
- PageRank can be defined from the resolvent:

$$
(\mathbf{I}-\alpha \mathbf{A})^{-1}=\sum_{k=0}^{\infty} \alpha^{k} \mathbf{A}^{k}
$$

\rightarrow replace $\frac{1}{k!}$ with other coefficients?

$f(\mathbf{A})$ as weighted sum of walks

For $f(\mathbf{A})=e^{t \mathbf{A}}$ and $f(\mathbf{A})=(1-\alpha \mathbf{A})^{-1}$, how are walks weighted?

$$
f(\mathbf{A}) \mathbf{b}=\left(f_{0} \mathbf{I}+f_{1} \mathbf{A}+f_{2} \mathbf{A}^{2}+f_{3} \mathbf{A}^{3}+\cdots\right) \mathbf{b}
$$

Big Graphs from Social Networks

We've seen the computation (f); what does the domain of inputs look like?

■ Social networks like Twitter, YouTube, Friendster, Livejournal

- Large: $n=10^{6}, 10^{7}, 10^{9}+$
- Sparse: $|E|=O(n)$, often $\leq 50 n$
- Difficulty: "small world" property: diameter ≈ 4 (!)

■ Helpful: Power-law degree distribution (picture)

Power-law degree distribution

[Laboratory for Web Algorithms, http://law.di.unimi.it/index.php]

Difficulties with current methods: Sidje, TOMS 1998; Al-Mohy and Higham, SISC 2011

■ Leading methods for $f(\mathbf{A}) \mathbf{b}$ use Krylov or Taylor methods: "basically" repeated mat-vecs
■ "Small world" property: graph diameter $\leq 4 \Rightarrow$ repeated mat-vecs fill in rapidly (see picture)
■ Not designed specifically for sparse networks.

Fill-in from repeated matvecs

Vectors $\mathbf{P}^{k} \mathbf{e}_{i}$ for $k=1,2,3,4 . n=1133$

$f(\mathbf{P}) \mathbf{e}_{i}$ is a localized vector

x-axis: vector index, y-axis: magnitude of entry the column of $\exp \{\mathbf{P}\}$ produced by previous slide's matvecs

Local Method

New method: avoid mat-vecs! \rightarrow use a local method.

Local algorithms run in time proportional to size of output: sparse solution vector $=$ small runtime

Instead of matvecs, we do specially-selected vector adds using a relaxation method.

Main Result 1

Theorem 1: [action of f on \mathbf{b}]
Given nonnegative \mathbf{A} satisfying $\|\mathbf{A}\|_{1} \leq 1$, with power-law degree distribution and max degree d; and sparse stochastic \mathbf{b}; our method computes $\mathbf{x} \approx f(\mathbf{A}) \mathbf{b}$ such that

$$
\begin{gathered}
\|f(\mathbf{A}) \mathbf{b}-\mathbf{x}\|_{1}<\varepsilon \text { in work }(\varepsilon)=O\left((1 / \varepsilon)^{C_{f}} \log (1 / \varepsilon) d^{2} \log (d)^{2}\right) \\
\text { "work" "scales as" } d^{2} \log (d)^{2} \text { in the graph size }
\end{gathered}
$$

for any function f that decays "fast enough". The constant C_{f} depends on how quickly the Taylor coefficients of f decay.

Main Result 1

Theorem 1: [action of f on \mathbf{b}]
Given nonnegative \mathbf{A} satisfying $\|\mathbf{A}\|_{1} \leq 1$, with power-law degree distribution and max degree d; and sparse stochastic \mathbf{b}; our method computes $\mathbf{x} \approx f(\mathbf{A}) \mathbf{b}$ such that

$$
\|f(\mathbf{A}) \mathbf{b}-\mathbf{x}\|_{1}<\varepsilon \text { in work }(\varepsilon)=O\left((1 / \varepsilon)^{C_{f}} \log (1 / \varepsilon) d^{2} \log (d)^{2}\right)
$$

"work" "scales as" $d^{2} \log (d)^{2}$ in the graph size for any function f that decays "fast enough". The constant C_{f} depends on how quickly the Taylor coefficients of f decay.
$\begin{array}{lll}\text { For } f(x)=(1-\alpha x)^{-1}, & C_{f}=\frac{1}{1-\alpha} & (\text { Note: } \alpha \in(0,1)) . \\ \text { For } f(x)=e^{x}, & C_{f}=\frac{3}{2} & \\ \text { For } f(x)=x^{1 / p,} & C_{f}=\frac{3 p}{5 p-1} & (\text { Note: } p \in(0,1)) .\end{array}$

Main Result 2

Theorem 2: [diffusion of f across a graph]
Given column stochastic \mathbf{A} and $\mathbf{b}, \tilde{\mathbf{x}} \approx \tilde{f}(t \mathbf{A}) \mathbf{b}$ can be computed such that

$$
\|\tilde{f}(\mathbf{P}) \mathbf{b}-\tilde{\mathbf{x}}\|_{\infty}<\varepsilon \text { in work }(\varepsilon)=O\left(\frac{2 f(t)}{\varepsilon}\right)
$$

(Remark: the 'tilde' denotes a degree-normalized version for the diffusion: $\mathbf{D}^{-1} \exp \{t \mathbf{P}\} \mathbf{b}$, for example. We normalize by degrees to adjust for the influence of the stationary distribution of \mathbf{P}.)

Corollary: $f(\mathbf{A}) \mathbf{b}$ is a local vector.
Proof: Because sublinear work is done, $f(\mathbf{A}) \mathbf{b}$ cannot have $O(n)$ nonzeros.

Overview

Outline of Nexpokit method (our second method, hk-relax, is related)

1. Express $f(\mathbf{A}) \mathbf{b}$ via a Taylor polynomial
2. Form large linear system out of Taylor terms
3. Use sparse solver to approximate each term's largest entries
4. Combine approximated terms into a solution

In terms of Taylor terms

Taylor polynomial:

$$
f(\mathbf{A}) \mathbf{b} \approx\left(f_{0} \mathbf{I}+f_{1} \mathbf{A}+f_{2} \mathbf{A}^{2}+f_{3} \mathbf{A}^{3}+\cdots+f_{N} \mathbf{A}^{N}\right) \mathbf{b}
$$

Compute terms recursively: $\mathbf{v}_{k}=f_{k} \mathbf{A}^{k} \mathbf{e}_{i}=\frac{f_{k}}{f_{k-1}} \mathbf{A}\left(f_{k-1} \mathbf{A}^{k-1}\right) \mathbf{e}_{i}$

$$
\mathbf{v}_{k}=\frac{f_{k}}{f_{k-1}} \mathbf{A} \mathbf{v}_{k-1}
$$

Then $f(\mathbf{A}) \mathbf{b} \approx \mathbf{v}_{0}+\mathbf{v}_{1}+\cdots+\mathbf{v}_{N-1}+\mathbf{v}_{N}$
(But we want to avoid computing \mathbf{v}_{j} in full...)

Forming a linear system

So we convert the Taylor polynomial into a linear system. For simplicity's sake, we use the example of $\exp \{\mathbf{A}\} \mathbf{e}_{i}$ here.

Forming a linear system

So we convert the Taylor polynomial into a linear system. For simplicity's sake, we use the example of $\exp \{\mathbf{A}\} \mathbf{e}_{i}$ here.

$$
\left[\begin{array}{ccccc}
\mathbf{I} & & & & \\
-\mathbf{A} / 1 & \mathbf{I} & & & \\
& -\mathbf{A} / 2 & \ddots & & \\
& & \ddots & \mathbf{I} & \\
& & & -\mathbf{A} / N & \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{0} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{e}_{i} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where we use the identity $\mathbf{v}_{k}=\frac{1}{k} \mathbf{A} \mathbf{v}_{k-1}$ (which comes from $\mathbf{v}_{k}=\frac{f_{k}}{f_{k-1}} \mathbf{A} \mathbf{v}_{k-1}$, since $f_{k}=\frac{1}{k!}$, so $\left.f_{k} / f_{k-1}=\frac{(k-1)!}{k!}=\frac{1}{k}\right)$. Then $\exp \{\mathbf{A}\} \mathbf{e}_{i} \approx \mathbf{v}_{0}+\mathbf{v}_{1}+\cdots+\mathbf{v}_{N-1}+\mathbf{v}_{N}$

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving $\mathbf{M x}=\mathbf{b}$ when \mathbf{x} is "effectively sparse" (i.e. a localized vector)

1. Set $\mathbf{x}^{(0)}=0, \mathbf{r}^{(0)}=\mathbf{b}$, then iterate:
2. At step k, relax maximal entry of $\mathbf{r}^{(k)}$ (denoted $m^{(k)}$), add to $\mathbf{x}^{(k)}$;

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+m^{(k)} \cdot \mathbf{e}_{i}
$$

3. Add corresponding column of \mathbf{M} to residual:

$$
\mathbf{r}^{(k+1)}=\mathbf{r}^{(k)}-m^{(k)} \cdot \mathbf{M}(:, i)
$$

NEXPOKIT

Apply GS to our linear system, $\mathbf{M} \overline{\mathbf{v}}=\overline{\mathbf{e}}_{i}$:

$$
\left[\begin{array}{c}
\mathbf{r}_{0} \\
\mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{e}_{i} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]-\left[\begin{array}{ccccc}
\mathbf{l} & & & & \\
-\mathbf{A} / 1 & \mathbf{l} & & & \\
& -\mathbf{A} / 2 & \ddots & & \\
& & \ddots & \mathbf{l} & \\
& & & -\mathbf{A} / N & \mathbf{l}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{0} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{N}
\end{array}\right]
$$

The update can be simplified to a block-wise update:

$$
\begin{equation*}
\mathbf{r}^{(k+1)}=\left(\mathbf{r}^{(k)}-m^{(k)} \cdot \mathbf{e}_{j} \otimes \mathbf{e}_{i}\right)+\frac{m^{(k)}}{j+1} \cdot \mathbf{A}(:, i) \tag{1}
\end{equation*}
$$

No component of large linear system formed explicitly:

- residual vector stored in a heap (alternative: queue with threshold)
- matrix \mathbf{M} not formed at all
- blocks \mathbf{v}_{j} not stored separately, stored as one solution vector $\mathbf{x}=\sum \mathbf{v}_{j}$.

Outline of proof

Initial residual is $\mathbf{r}=\mathbf{e}_{i}$, has $\left\|\mathbf{r}^{(0)}\right\|_{1}=1$, and it decreases at each step.
We show that

1. decay of $\left\|\mathbf{r}^{(k)}\right\|_{1}$ depends on its max value $m^{(k)}$
2. max value $m^{(k)}$ is bounded below by average value of \mathbf{r}
3. average value of \mathbf{r} depends on $\#$ nonzeros in \mathbf{r}
4. growth of $\# \mathrm{nnz}(\mathbf{r})$ depends on degree distribution
5. Power-law degree distribution implies $\# \mathrm{nnz}(\mathbf{r})$ grows slowly, so
6. $\|\mathbf{r}\|_{1} \rightarrow 0$ at a certain minimum speed!

Decay of $\|r\|_{1}$

Residual $\mathbf{r}=\left[\mathbf{r}_{0} ; \mathbf{r}_{1} ; \cdots ; \mathbf{r}_{N}\right]$ has index and block section: $r(i, j)$. For our special linear system, the GS residual reduces to: during step k, do
(1) delete $r(i, j)^{(k)}$ in \mathbf{r} and add it to \mathbf{x}_{i}, our approximation;
(2) add scaled column, $\frac{m^{(k)}}{j} \mathbf{A}(:, i)$, to section j of the residual.

Taking the 1 -norm of (1) shows

$$
\left\|\mathbf{r}^{(k+1)}\right\|_{1} \leq\left\|\mathbf{r}^{(k)}\right\|_{1}-m^{(k)}\left(1-\frac{1}{j}\right)
$$

Note the $\left(1-\frac{1}{j}\right)$ factor appears because we're looking specifically at e^{x}. For the resolvent, $f(x)=(1-\alpha x)^{-1}$, this factor would be $(1-\alpha)$ instead.

Number of nonzeros

Largest entry, $m^{(k)}=r(i, j)$ is bounded below by average value of the residual,

$$
m^{(k)}=r(i, j)>\|\mathbf{r}\|_{1} /(\# \text { non zeros in } \mathbf{r})
$$

But we can bound $n n z(\mathbf{r}):=(\#$ of nonzeros in \mathbf{r}) based on the degree of the column of \mathbf{A} that we add to the residual each step.

Number of nonzeros

Largest entry, $m^{(k)}=r(i, j)$ is bounded below by average value of the residual,

$$
m^{(k)}=r(i, j)>\|\mathbf{r}\|_{1} /(\# \text { non zeros in } \mathbf{r})
$$

But we can bound $n n z(\mathbf{r}):=(\#$ of nonzeros in \mathbf{r}) based on the degree of the column of \mathbf{A} that we add to the residual each step.

Each iteration we can add no more nonzeros to \mathbf{r} than the largest degree among all unvisited nodes.

Usually the best we can say is that this is upper bounded by $d:=d_{\text {max }} *$ (\#iterations), because it's possible every node has max degree.

But with the power-law assumption ...

Number of nonzeros

Largest entry, $m^{(k)}=r(i, j)$ is bounded below by average value of the residual,

$$
m^{(k)}=r(i, j)>\|\mathbf{r}\|_{1} /(\# \text { non zeros in } \mathbf{r})
$$

But we can bound $n n z(\mathbf{r}):=(\#$ of nonzeros in \mathbf{r}) based on the degree of the column of \mathbf{A} that we add to the residual each step.

Each iteration we can add no more nonzeros to \mathbf{r} than the largest degree among all unvisited nodes.

Usually the best we can say is that this is upper bounded by $d:=d_{\text {max }} *$ (\#iterations), because it's possible every node has max degree.

But with the power-law assumption ...

Power-law degree distribution

With power-law assumption, we know that the $t^{t h}$ largest degree, d_{t}, is bounded by $d_{t} \leq C d \cdot t^{-\beta}$ for some β near 1 and some constant C.

After k iterations, $n n z(\mathbf{r})$ is bounded by the sum of the degrees of the new vertices visited in those k iterations. By step k, this is at most $\mathrm{nnz}(\mathbf{r}) \leq \sum_{t=1}^{k} d_{t}$, so

$$
\mathrm{nnz}(\mathbf{r}) \leq \sum_{t=1}^{k} d_{t} \leq \sum_{t=1}^{k} C d \cdot t^{-1}
$$

In fact, after the first d iterations, d_{t} is just a small constant, c. Then this sum grows no faster than $\sum_{t=1}^{k} d \cdot t^{-1} \leq d \log (d)+c \cdot t$. So nnz (\mathbf{r}) grows like $t \cdot c$ for $c \approx 1$ instead of $t \cdot d(!)$.

Convergence

We had

$$
\left\|\mathbf{r}^{(k+1)}\right\|_{1} \leq\left\|\mathbf{r}^{(k)}\right\|_{1}-m^{(k)}\left(1-\frac{1}{j}\right)
$$

The power-law assumption allows the bound $-m^{(k)} \leq-\frac{\left\|\mathbf{r}^{(k)}\right\|_{1}}{C_{2}+c \cdot k}$.

$$
\begin{aligned}
\left\|\mathbf{r}^{(k+1)}\right\|_{1} & \leq\left\|\mathbf{r}^{(k)}\right\|_{1}\left(1-\frac{2 / 3}{C_{2}+c \cdot k}\right) \\
& \leq\left\|\mathbf{r}^{(k)}\right\|_{1} \exp \left\{-\frac{2}{3} \frac{1}{C_{2}+c \cdot k}\right\} \\
& \leq\left\|\mathbf{r}^{(0)}\right\|_{1} \exp \left\{-\frac{2}{3} \sum_{t=0}^{k} \frac{1}{C_{2}+c \cdot t}\right\} \\
& \leq \exp \left\{-\frac{2}{3} \log (k+C)\right\} \\
\left\|\mathbf{r}^{(k+1)}\right\|_{1} & \leq(k+C)^{-2 / 3}
\end{aligned}
$$

(See the paper cited at the end for a precise completion of the proof).

Runtime v. Graph Size

"GSQ" is a version of our Gauss-Southwell method that stores the residual vector in a queue instead of a heap.

Runtime on larger networks

For ljournal-2008, $n=5,363,260$, ave degree $=14.7$.

Runtime on larger networks

For webbase-2001, $n=118,142,155$, ave degree $=8.6$.

Code and Further Details

Code available at
http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit
For details and references, see our paper at
http://arxiv.org/abs/1310.3423

