
A sub-linear method for computing columns of
functions of sparse matrices

Kyle Kloster and David F. Gleich

Purdue University

March 3, 2014

Supported by NSF CAREER 1149756-CCF

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 1 / 29

Overview

1. f (A): problem description and applications

2. Description of “sub-linear” results

3. The Algorithm for f (A)b

4. Intuition for proof

5. Experiments on real-world social networks

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 2 / 29

The Problem

Functions of Matrices: background

We can apply most functions, e.g. f (x) = cos(x), to any square matrices
A if f is defined on the eigenvalues of A. One definition: Taylor series!

cos(x) =
1

0!
+
−x2

2!
+

x4

4!
+ · · ·

cos(A) =
I

0!
+
−A2

2!
+

A4

4!
+ · · ·

Then we can think of f (A)b as the action of the operator f (A) on b, or
as a diffusion on a graph underlying the matrix A.

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 3 / 29

The Problem

Functions of Matrices: applications

Action:
f (x) = ex : dx

dt = Ax; x(0) = x0
solution: x(t) = exp{tA}x0

f (x) = x1/p: P(t) transition matrix for Markov process

P(1) describes process over a year; P1/12 for a month

Diffusion:
f (x) = (1− αx)−1: the resolvent yields the PageRank diffusion:

f (P)ei interpreted as nodes’ importance to node i .

f (x) = etx : etPei , the heat kernel diffusion, offers
an alternative ranking of nodes’ importance

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 4 / 29

The Problem

Functions of Matrices: applications

Action:
f (x) = ex : dx

dt = Ax; x(0) = x0
solution: x(t) = exp{tA}x0

f (x) = x1/p: P(t) transition matrix for Markov process

P(1) describes process over a year; P1/12 for a month
Diffusion:
f (x) = (1− αx)−1: the resolvent yields the PageRank diffusion:

f (P)ei interpreted as nodes’ importance to node i .

f (x) = etx : etPei , the heat kernel diffusion, offers
an alternative ranking of nodes’ importance

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 4 / 29

The Problem

Parameters of f (A)b

A:

Original motivation: A = a normalized version of an adjacency matrix
from a social network; the Laplacian or random-walk matrix. Sparse,
small diameter, stochastic, degree distribution follows power-law

Generalized: any nonnegative A with ‖A‖1 ≤ 1.

b:

Originally b = ei , i.e. compute a column f (A)ei

Generalized: b can be any sparse, stochastic vector

f (·):

Originally f (x) = ex , (1− αx)−1

Generalized: can be any function decaying “fast enough”

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 5 / 29

The Problem

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?

exp{A} =
∞∑
k=0

1

k!
Ak

(Ak)ij gives the number of length-k walks from i to j , so...

Large entries of exp{A} denote “important” nodes / links

Used for link-prediction, node ranking, clustering

exp{A} is common, but other f (A) can be used:

PageRank can be defined from the resolvent:

(I− αA)−1 =
∞∑
k=0

αkAk

→ replace 1
k! with other coefficients?

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 6 / 29

The Problem

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?

exp{A} =
∞∑
k=0

1

k!
Ak

(Ak)ij gives the number of length-k walks from i to j , so...

Large entries of exp{A} denote “important” nodes / links

Used for link-prediction, node ranking, clustering

exp{A} is common, but other f (A) can be used:

PageRank can be defined from the resolvent:

(I− αA)−1 =
∞∑
k=0

αkAk

→ replace 1
k! with other coefficients?

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 6 / 29

The Problem

f (A) as weighted sum of walks

For f (A) = etA and f (A) = (1− αA)−1, how are walks weighted?

f (A)b =
(
f0I + f1A + f2A2 + f3A3 + · · ·

)
b

0 20 40 60 80 100

10
−5

10
0

t=1 t=5 t=15 α=0.85

α=0.99

W
e
ig

h
t

Length

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 7 / 29

The Problem

Big Graphs from Social Networks

We’ve seen the computation (f); what does the domain of inputs look
like?

Social networks like Twitter, YouTube, Friendster, Livejournal

Large: n = 106, 107, 109+

Sparse: |E | = O(n), often ≤ 50n

Difficulty: “small world” property: diameter ≈ 4 (!)

Helpful: Power-law degree distribution (picture)

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 8 / 29

The Problem

Power-law degree distribution

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 9 99 999 9999

fr
eq

ue
nc

y

outdegree

[Laboratory for Web Algorithms, http://law.di.unimi.it/index.php]

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 9 / 29

The Problem

Difficulties with current methods:
Sidje, TOMS 1998; Al-Mohy and Higham, SISC 2011

Leading methods for f (A)b use Krylov or Taylor methods:
“basically” repeated mat-vecs

“Small world” property: graph diameter ≤ 4 ⇒ repeated mat-vecs fill
in rapidly (see picture)

Not designed specifically for sparse networks.

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 10 / 29

The Problem

Fill-in from repeated matvecs

Vectors Pkei for k = 1, 2, 3, 4. n = 1133

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 11 / 29

The Problem

f (P)ei is a localized vector

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x-axis: vector index, y-axis: magnitude of entry
the column of exp{P} produced by previous slide’s matvecs

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 12 / 29

The Problem

Local Method

New method: avoid mat-vecs! → use a local method.

Local algorithms run in time proportional to size of output:

sparse solution vector = small runtime

Instead of matvecs, we do specially-selected vector adds using a relaxation
method.

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 13 / 29

Main results

Main Result 1

Theorem 1:[action of f on b]
Given nonnegative A satisfying ‖A‖1 ≤ 1, with power-law degree
distribution and max degree d ; and sparse stochastic b; our method
computes x ≈ f (A)b such that

‖f (A)b− x‖1 < ε in work (ε) = O
(

(1/ε)Cf log(1/ε)d2log(d)2
)
,

“work” “scales as” d2log(d)2 in the graph size

for any function f that decays “fast enough”. The constant Cf depends
on how quickly the Taylor coefficients of f decay.

For f (x) = (1− αx)−1, Cf = 1
1−α (Note: α ∈ (0, 1)).

For f (x) = ex , Cf = 3
2

For f (x) = x1/p, Cf = 3p
5p−1 (Note: p ∈ (0, 1)).

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 14 / 29

Main results

Main Result 1

Theorem 1:[action of f on b]
Given nonnegative A satisfying ‖A‖1 ≤ 1, with power-law degree
distribution and max degree d ; and sparse stochastic b; our method
computes x ≈ f (A)b such that

‖f (A)b− x‖1 < ε in work (ε) = O
(

(1/ε)Cf log(1/ε)d2log(d)2
)
,

“work” “scales as” d2log(d)2 in the graph size

for any function f that decays “fast enough”. The constant Cf depends
on how quickly the Taylor coefficients of f decay.

For f (x) = (1− αx)−1, Cf = 1
1−α (Note: α ∈ (0, 1)).

For f (x) = ex , Cf = 3
2

For f (x) = x1/p, Cf = 3p
5p−1 (Note: p ∈ (0, 1)).

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 14 / 29

Main results

Main Result 2

Theorem 2:[diffusion of f across a graph]
Given column stochastic A and b, x̃ ≈ f̃ (tA)b can be computed such that

‖f̃ (P)b− x̃‖∞ < ε in work (ε) = O

(
2f (t)

ε

)
,

(Remark: the ‘tilde’ denotes a degree-normalized version for the diffusion:
D−1exp{tP}b, for example. We normalize by degrees to adjust for the
influence of the stationary distribution of P.)

Corollary: f (A)b is a local vector.

Proof: Because sublinear work is done, f (A)b cannot have O(n) nonzeros.

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 15 / 29

Our method: Nexpokit

Overview

Outline of Nexpokit method (our second method, hk-relax, is related)

1. Express f (A)b via a Taylor polynomial

2. Form large linear system out of Taylor terms

3. Use sparse solver to approximate each term’s largest entries

4. Combine approximated terms into a solution

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 16 / 29

Our method: Nexpokit

In terms of Taylor terms

Taylor polynomial:

f (A)b ≈
(
f0I + f1A + f2A2 + f3A3 + · · ·+ fNAN

)
b

Compute terms recursively: vk = fkAkei = fk
fk−1

A
(
fk−1Ak−1) ei

vk = fk
fk−1

Avk−1

Then f (A)b ≈ v0 + v1 + · · ·+ vN−1 + vN
(But we want to avoid computing vj in full...)

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 17 / 29

Our method: Nexpokit

Forming a linear system

So we convert the Taylor polynomial into a linear system. For simplicity’s
sake, we use the example of exp{A}ei here.

I

−A/1 I

−A/2
. . .
. . . I

−A/N I

v0
v1
v2
...

vN

 =

ei
0
0
...
0

where we use the identity vk = 1
k Avk−1 (which comes from

vk = fk
fk−1

Avk−1, since fk = 1
k! , so fk/fk−1 = (k−1)!

k! = 1
k).

Then exp{A}ei ≈ v0 + v1 + · · ·+ vN−1 + vN

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 18 / 29

Our method: Nexpokit

Forming a linear system

So we convert the Taylor polynomial into a linear system. For simplicity’s
sake, we use the example of exp{A}ei here.

I

−A/1 I

−A/2
. . .
. . . I

−A/N I

v0
v1
v2
...

vN

 =

ei
0
0
...
0

where we use the identity vk = 1
k Avk−1 (which comes from

vk = fk
fk−1

Avk−1, since fk = 1
k! , so fk/fk−1 = (k−1)!

k! = 1
k).

Then exp{A}ei ≈ v0 + v1 + · · ·+ vN−1 + vN

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 18 / 29

Our method: Nexpokit

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

1. Set x(0) = 0, r(0) = b, then iterate:

2. At step k , relax maximal entry of r(k) (denoted m(k)), add to x(k);

x(k+1) = x(k) + m(k) · ei
3. Add corresponding column of M to residual:

r(k+1) = r(k) −m(k) ·M(:, i)

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 19 / 29

Our method: Nexpokit

NEXPOKIT

Apply GS to our linear system, Mv̄ = ēi :
r0
r1
r2
...

rN

 =

ei
0
0
...
0

−

I
−A/1 I

−A/2
. . .
. . . I

−A/N I

v0
v1
v2
...

vN

The update can be simplified to a block-wise update:

r(k+1) = (r(k) −m(k) · ej ⊗ ei) + m(k)

j+1 · A(:, i) (1)

No component of large linear system formed explicitly:
- residual vector stored in a heap (alternative: queue with threshold)
- matrix M not formed at all
- blocks vj not stored separately, stored as one solution vector x =

∑
vj .

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 20 / 29

Proof

Outline of proof

Initial residual is r = ei , has ‖r(0)‖1 = 1, and it decreases at each step.
We show that

1. decay of ‖r(k)‖1 depends on its max value m(k)

2. max value m(k) is bounded below by average value of r

3. average value of r depends on # nonzeros in r

4. growth of #nnz(r) depends on degree distribution

5. Power-law degree distribution implies #nnz(r) grows slowly, so

6. ‖r‖1 → 0 at a certain minimum speed!

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 21 / 29

Proof

Decay of ‖r‖1

Residual r = [r0; r1; · · · ; rN] has index and block section: r(i , j). For our
special linear system, the GS residual reduces to: during step k , do

(1) delete r(i , j)(k) in r and add it to xi , our approximation;

(2) add scaled column, m(k)

j A(:, i), to section j of the residual.

Taking the 1-norm of (1) shows

‖r(k+1)‖1 ≤ ‖r(k)‖1 −m(k)(1− 1
j)

Note the (1− 1
j) factor appears because we’re looking specifically at ex .

For the resolvent, f (x) = (1−αx)−1, this factor would be (1−α) instead.

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 22 / 29

Proof

Number of nonzeros

Largest entry, m(k) = r(i , j) is bounded below by average value of the
residual,

m(k) = r(i , j) > ‖r‖1/(# non zeros in r)

But we can bound nnz(r):= (# of nonzeros in r) based on the degree of
the column of A that we add to the residual each step.

Each iteration we can add no more nonzeros to r than the largest degree
among all unvisited nodes.

Usually the best we can say is that this is upper bounded by
d := dmax ∗ (#iterations), because it’s possible every node has max
degree.

But with the power-law assumption ...

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 23 / 29

Proof

Number of nonzeros

Largest entry, m(k) = r(i , j) is bounded below by average value of the
residual,

m(k) = r(i , j) > ‖r‖1/(# non zeros in r)

But we can bound nnz(r):= (# of nonzeros in r) based on the degree of
the column of A that we add to the residual each step.

Each iteration we can add no more nonzeros to r than the largest degree
among all unvisited nodes.

Usually the best we can say is that this is upper bounded by
d := dmax ∗ (#iterations), because it’s possible every node has max
degree.

But with the power-law assumption ...

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 23 / 29

Proof

Number of nonzeros

Largest entry, m(k) = r(i , j) is bounded below by average value of the
residual,

m(k) = r(i , j) > ‖r‖1/(# non zeros in r)

But we can bound nnz(r):= (# of nonzeros in r) based on the degree of
the column of A that we add to the residual each step.

Each iteration we can add no more nonzeros to r than the largest degree
among all unvisited nodes.

Usually the best we can say is that this is upper bounded by
d := dmax ∗ (#iterations), because it’s possible every node has max
degree.

But with the power-law assumption ...

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 23 / 29

Proof

Power-law degree distribution

With power-law assumption, we know that the tth largest degree, dt , is
bounded by dt ≤ Cd · t−β for some β near 1 and some constant C .

After k iterations, nnz(r) is bounded by the sum of the degrees of the new
vertices visited in those k iterations. By step k , this is at most
nnz(r) ≤

∑k
t=1 dt , so

nnz(r) ≤
k∑

t=1

dt ≤
k∑

t=1

Cd · t−1

In fact, after the first d iterations, dt is just a small constant, c . Then this
sum grows no faster than

∑k
t=1 d · t−1 ≤ d log(d) + c · t. So nnz(r)grows

like t · c for c ≈ 1 instead of t · d (!).

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 24 / 29

Proof

Convergence

We had
‖r(k+1)‖1 ≤ ‖r(k)‖1 −m(k)(1− 1

j)

The power-law assumption allows the bound −m(k) ≤ − ‖r
(k)‖1

C2+c·k .

‖r(k+1)‖1 ≤ ‖r(k)‖1
(

1− 2/3

C2 + c · k

)
≤ ‖r(k)‖1exp{−2

3
1

C2+c·k }

≤ ‖r(0)‖1exp{−2
3

k∑
t=0

1
C2+c·t }

≤ exp{−2
3 log(k + C)}

‖r(k+1)‖1 ≤ (k + C)−2/3

(See the paper cited at the end for a precise completion of the proof).

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 25 / 29

Experimental Results

Runtime v. Graph Size

10
3

10
4

10
5

10
6

10
−4

10
−2

10
0

|E| + |V|

R
u
n
ti
m

e
 (

s
e
c
s
).

TSGS

TSGSQ

EXPV

MEXPV

TAYLOR

“GSQ” is a version of our Gauss-Southwell method that stores the residual
vector in a queue instead of a heap.

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 26 / 29

Experimental Results

Runtime on larger networks

0 10 20 30
0

50

100

150

200

250

300

350

Trial

T
im

e
 (

s
e
c
)

EXMPV

GSQ

GS

For ljournal-2008, n = 5, 363, 260, ave degree = 14.7.
Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 27 / 29

Experimental Results

Runtime on larger networks

0 10 20 30
0

20

40

60

80

100

120

140

Trial

T
im

e
 (

s
e
c
)

EXMPV

GSQ

GS

For webbase-2001, n = 118, 142, 155, ave degree = 8.6.
Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 28 / 29

Experimental Results

Code and Further Details

Code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit

For details and references, see our paper at

http://arxiv.org/abs/1310.3423

Kyle Kloster (Purdue) Fast f (A)b March 3, 2014 29 / 29

	The Problem
	Main results
	Our method: Nexpokit
	Proof
	Experimental Results

