Facebook Friends and Matrix Functions

Graduate Research Day

Joint with David F. Gleich, (Purdue), supported by NSF CAREER 1149756-CCF

Kyle Kloster Purdue University

Network Analysis

Use linear algebra to study graphs

Network Analysis

Use linear algebra to study graphs

Graph, G

- V, vertices (nodes)
- E, edges (links)
- **degree** of a node = # edges incident to it.
- nodes sharing an edge are **neighbors**.

Network Analysis

Use linear algebra to study graphs

Graph, G

- **V**, vertices (nodes)
- E, edges (links)

Erdős Number Facebook friends Twitter followers Search engines Amazon/Netflix rec. Protein interactions Power grids Google Maps Air traffic control Sports rankings Cell tower placement Scheduling Parallel programming Everything Kevin Bacon

Diameter

Is everything just a few hops away from everything else?

Diameter Clustering

Are there tightly-knit groups of nodes?

Diameter Clustering

Connectivity

How well can each node reach every other node?

Diameter Clustering Connectivity

Linear Algebra

Eigenvalues and matrix functions shed light on all these questions.

These tools require a matrix related to the graph...

Graph Matrices

Adjacency matrix, A

$$\mathbf{A}_{ij} = \begin{cases} 1, \text{ if nodes i, j share an edge (are adjacent)} \\ 0 \text{ otherwise} \end{cases}$$

Random-walk transition matrix, **P**

$$P_{ij} = A_{ij}/d_j$$
 where d_j is the degree of node j.

Stochastic! i.e. column-sums = 1

Network analysis via Heat Kernel

Uses include Local clustering Link prediction Node centrality

Heat kernel is...

a graph diffusion a function of a matrix $\exp(\mathbf{G}) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{G}^{k}$ For **G**, a network's $\begin{bmatrix} \text{random-walk, P} \\ \text{adjacency, A} \\ \text{Laplacian, L} \end{bmatrix} \text{ matrix}$

Heat Kernel describes node connectivity

 $(\mathbf{A}^{\kappa})_{ij} = \#$ walks of length k from node *i* to *j*

$$\exp(\mathbf{A})_{ij} = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{A}^k)_{ij}$$

"sum up" the walks between *i* and *j*

For a small set of seed nodes, **s**, exp(A) s describes nodes most relevant to **s**

Diffusion score

"diffusion scores" of a graph = weighted sum of probability vectors

diffusion score vector = \mathbf{f}

- P = random-walk transition matrix
 - ____ normalized

S

 c_k

- seed vector
- weight on
 - stage *k*

Heat Kernel vs. PageRank Diffusions

Heat Kernel uses tk/k!

Our work is new analysis and algorithms for this diffusion.

PageRank uses α^k at stage k.

Standard, widely-used diffusion we use for comparison. Linchpin of Google's original success!

Heat Kernel vs. PageRank Theory

good clusters fast algorithm

PR

Local Cheeger Inequality: "PR finds near-optimal clusters" existing constant-time algorithm [Andersen Chung Lang 06]

ΗK

Heat Kernel vs. PageRank Theory

good clusters fast algorithm

PR

Local Cheeger Inequality: "PR finds near-optimal clusters" existing constant-time algorithm [Andersen Chung Lang 06]

ΗK

Local Cheeger Inequality [Chung 07]

Heat Kernel vs. PageRank Theory

good clusters fast algorithm

PR

Local Cheeger Inequality: "PR finds near-optimal clusters" existing constant-time algorithm [Andersen Chung Lang 06]

ΗK

Local Cheeger Inequality [Chung 07]

Our work

$\hat{\boldsymbol{x}} pprox \exp\left(\boldsymbol{\boldsymbol{P}} ight) \boldsymbol{s}$

- (1) Approximate with a polynomial
- (2) Convert to linear system

(Details in paper)

(3) Solve with sparse linear solver

$\hat{\boldsymbol{x}} pprox \exp\left(\boldsymbol{\boldsymbol{P}} ight) \boldsymbol{s}$

- (1) Approximate with a polynomial
- (2) Convert to linear system
- (3) Solve with sparse linear solver

$$\mathbf{A}\mathbf{x}^{(k)} \approx \mathbf{b}$$
$$\mathbf{r}^{(k)} := \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}$$
$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \mathbf{A}r^{(k)}_{big}$$

Gauss-Southwell Sparse solver

(Details in paper)

"relax" largest entry in **r**

$\hat{\boldsymbol{x}} pprox \exp\left(\boldsymbol{\boldsymbol{P}} ight) \boldsymbol{s}$

- (1) Approximate with a polynomial
- (2) Convert to linear system
- (3) Solve with sparse linear solver
 - **Key:** We avoid doing these full matrix-vector products N $\exp(\mathbf{P}) \mathbf{S} \approx \sum_{k=0}^{N} \frac{1}{k!} \mathbf{P}^{k} \mathbf{S}$

(Details in paper)

$\hat{\bm{x}} \approx \exp{(\bm{P})\,\bm{s}}$

- (1) Approximate with a polynomial
- (2) Convert to linear system
- (3) Solve with sparse linear solver
 - **Key:** We avoid doing these full matrix-vector products $N = \sum_{k=0}^{N} \frac{1}{k!} P^k s$

(Details in paper)

(All my work was showing this actually can be done with bounded error.)

Algorithms & Theory for $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$

Algorithm 1, Weak Convergence

- constant time on any graph, $\tilde{O}(\frac{e}{c})$
- outperforms PageRank in clustering
- accuracy: $\|\boldsymbol{D}^{-1}\mathbf{x} \boldsymbol{D}^{-1}\hat{\mathbf{x}}\|_{\infty} < \varepsilon$

Algorithms & Theory for $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$ $\|\mathbf{D}^{-1}\mathbf{x} - \mathbf{D}^{-1}\hat{\mathbf{x}}\|_{\infty} < \varepsilon$

Conceptually

Diffusion vector quantifies node's connection to each other node. Divide each node's score by its degree, delete the nodes with score $< \varepsilon$.

Only a constant number of nodes remain in G!

Users spend "reciprocated time" with O(1) others.

Algorithms & Theory for $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$

Algorithm 2, Global Convergence (conditional)

Power-law Degrees

Realworld graphs have degrees distributed as follows. This causes diffusions to be **localized**.

[Boldi et al., Laboratory for Web Algorithmics 2008]

rank

Local solutions

Magnitude of entries in solution vector

Accuracy of approximation using only large entries

Local solutions

Magnitude of entries in solution vector

Accuracy of approximation using only large entries

Algorithms & Theory for $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$

Algorithm 2, Global Convergence (conditional)

- sublinear (power-law) $\tilde{O}(d \log d(1/\varepsilon)^{C})$

- accuracy: $\|\mathbf{X} - \hat{\mathbf{X}}\|_1 < \varepsilon$

Algorithms & Theory for $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$ $\|\mathbf{x} - \hat{\mathbf{x}}\|_1 < \varepsilon$

Conceptually

A node's diffusion vector can be approximated with **total** error $< \varepsilon$ using only O(d log d) entries.

In realworld networks (i.e. with degrees following a power-law), no node will have nontrivial connection with more than O(d log d) other nodes.

Experiments

Runtime on the web-graph

A particularly sparse graph benefits us best

$$|V| = O(10^8)$$

 $|E| = O(10^9)$

GSQ, GS: our methods EXPMV: MatLab

Thank you

Local clustering via heat kernel code available at http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Global heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit/

Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu