

Facebook Friends !
and Matrix Functions

Kyle Kloster!
Purdue University!

Joint with
David F. Gleich,
(Purdue), supported by"
NSF CAREER
1149756-CCF

!
Graduate Research Day

Network Analysis
Use linear algebra to study graphs

Graph

Network Analysis
Use linear algebra to study graphs

Graph, G
V, vertices (nodes)
E, edges (links)

degree of a node =
edges incident to it.

nodes sharing an
edge are neighbors.

Network Analysis
Use linear algebra to study graphs

Graph, G
V, vertices (nodes)
E, edges (links)

Erdős Number
Facebook friends
Twitter followers
Search engines
Amazon/Netflix rec.
Protein interactions
Power grids
Google Maps
Air traffic control
Sports rankings
Cell tower placement
Scheduling
Parallel programming
Everything
Kevin Bacon

Network Analysis
Graph Properties

Diameter

Is everything just
a few hops away

from everything else?

Use linear algebra to study graphs

Network Analysis
Graph Properties

Diameter
Clustering Are there tightly-knit

groups of nodes?

Use linear algebra to study graphs

Network Analysis
Graph Properties

Diameter
Clustering
Connectivity

How well can each
node reach every

other node?

Use linear algebra to study graphs

Network Analysis
Graph Properties

Diameter
Clustering
Connectivity

Linear Algebra
Eigenvalues and matrix

functions shed light
on all these questions.

These tools require a matrix
related to the graph…

Use linear algebra to study graphs

Graph Matrices
Adjacency matrix, A

Random-walk transition matrix, P

Aij = 1, if nodes i, j share an edge (are adjacent)
0 otherwise

where is the degree of node j.djP ij = Aij/dj

Stochastic! i.e. column-sums = 1

Network analysis via Heat Kernel

Uses include
Local clustering
Link prediction
Node centrality

Heat kernel is…

For G, a network’s matrix
random-walk,
adjacency,
Laplacian,

P
A
L

a graph diffusion
a function of a matrix

exp

(

G
)

=

1X

k=0

1

k !

Gk

Heat Kernel describes node connectivity

(Ak)ij = # walks of length k from node i to j

For a small set of seed nodes, s,
describes nodes most relevant to s

exp

(

A
)

s

“sum up” the walks
between i and j

exp

(

A
)ij =

1X

k=0

1

k !

(Ak
)ij

diffusion score vector = f!

f =
1X

k=0

ckP
ks

P = random-walk
transition matrix

s = normalized
seed vector

ck = weight on
stage k

Diffusion score

p0c0 p1c1 p2c2 p3c3

“diffusion scores” of a graph = "
weighted sum of probability vectors

++ + + …

Heat Kernel vs. PageRank Diffusions
Heat Kernel uses tk/k! "

Our work is new analysis and
algorithms for this diffusion.

p0t0
0!

p1 p2 p3++ +t1
1!

t2
2!

t3
3! + …

p0𝛼0 p1𝛼1 p2𝛼2 p3𝛼3

PageRank uses 𝛼k at stage k."

Standard, widely-used diffusion
we use for comparison.
Linchpin of Google’s original
success!

++ + + …

PR

Heat Kernel vs. PageRank Theory

HK

good
clusters

fast
algorithm

Local Cheeger Inequality:"
“PR finds near-optimal

clusters”

existing constant-time
algorithm

[Andersen Chung Lang 06]

PR

Heat Kernel vs. PageRank Theory

HK

good
clusters

fast
algorithm

Local Cheeger Inequality:"
“PR finds near-optimal

clusters”

existing constant-time
algorithm

[Andersen Chung Lang 06]

Local Cheeger Inequality
[Chung 07]

PR

Heat Kernel vs. PageRank Theory

HK

good
clusters

fast
algorithm

Local Cheeger Inequality:"
“PR finds near-optimal

clusters”

existing constant-time
algorithm

[Andersen Chung Lang 06]

Local Cheeger Inequality
[Chung 07] Our work!

Algorithm outline

(1) Approximate with a polynomial
(2) Convert to linear system
(3) Solve with sparse linear solver

 (Details in paper)

ˆ

x ⇡ exp

(

P
)

s

Algorithm outline

(1) Approximate with a polynomial
(2) Convert to linear system
(3) Solve with sparse linear solver

 (Details in paper)

ˆ

x ⇡ exp

(

P
)

s

Ax

(k) ⇡ b

r

(k) := b � Ax

(k)

x

(k+1) := x

(k) + Ar (k)
big

Gauss-Southwell
Sparse solver

“relax” largest
entry in r

Algorithm outline

(1) Approximate with a polynomial
(2) Convert to linear system
(3) Solve with sparse linear solver

 (Details in paper)

We avoid doing these
full matrix-vector
products

Key:

ˆ

x ⇡ exp

(

P
)

s

exp

(

P
)

s ⇡
NX

k=0

1

k !

Pk s

Algorithm outline

(1) Approximate with a polynomial
(2) Convert to linear system
(3) Solve with sparse linear solver

 (Details in paper)

We avoid doing these
full matrix-vector
products

Key:

ˆ

x ⇡ exp

(

P
)

s

exp

(

P
)

s ⇡
NX

k=0

1

k !

Pk s

(All my work was
showing this
actually can

be done
with bounded

error.)

Algorithms & Theory for ˆ

x ⇡ exp

(

P
)

s

Algorithm 1, Weak Convergence
- constant time on any graph,
- outperforms PageRank in clustering
- accuracy: kD�1

x � D�1
x̂k1 < "

Õ(e1

")

Algorithms & Theory for ˆ

x ⇡ exp

(

P
)

s

Conceptually
Diffusion vector quantifies node’s connection
to each other node. Divide each node’s score by its
degree, delete the nodes with score < ε.

Only a constant number of nodes remain in G!

Users spend “reciprocated time” with O(1) others.

kD�1
x � D�1

x̂k1 < "

Algorithms & Theory for ˆ

x ⇡ exp

(

P
)

s

Algorithm 2, Global Convergence (conditional)

Power-law Degrees

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 1 10 100 1000 10000

ra
nk

indegree

Realworld graphs have degrees distributed as
follows. This causes diffusions to be localized.

Power-law degrees

Degrees of nodes
in Ljournal-2008

Log-log scale

[Boldi et al., Laboratory for Web Algorithmics 2008]

Local solutions
Accuracy of approximation
using only large entries

Magnitude of entries
in solution vector

1 2 3 4 5
x 106

0

0.5

1

1.5

nnz = 4815948

m
ag

ni
tu

de

100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retained
100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retainedhas ~5 million nnz!
1X

k=0

1
k ! A

k s

Local solutions
Accuracy of approximation
using only large entries

Magnitude of entries
in solution vector

1 2 3 4 5
x 106

0

0.5

1

1.5

nnz = 4815948

m
ag

ni
tu

de

100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retained
100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retained

Only ~3,000 entries
For 10-4 accuracy!

has ~5 million nnz!
1X

k=0

1
k ! A

k s

Algorithms & Theory for ˆ

x ⇡ exp

(

P
)

s

Algorithm 2, Global Convergence (conditional)
- sublinear (power-law)

- accuracy: kx � x̂k1 < "

˜O(d log d(1/")C
)

Algorithms & Theory for ˆ

x ⇡ exp

(

P
)

s

kx � x̂k1 < "
Conceptually
A node’s diffusion vector can be approximated with
total error < ε using only O(d log d) entries.

In realworld networks (i.e. with degrees following a
power-law), no node will have nontrivial connection
with more than O(d log d) other nodes.

Experiments

Runtime on the web-graph

|V| = O(10^8)
|E| = O(10^9)

0 10 20 30
0

20

40

60

80

100

120

140

Trial

Ti
m

e
(s

ec
)

EXMPV
GSQ
GS

GSQ, GS: our methods
EXPMV: MatLab

A particularly sparse graph benefits us best

Thank you

Local clustering via heat kernel code available at
http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Global heat kernel code available at
http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit/

!

Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu

