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Network Analysis

Use linear algebra to study graphs


Graph




Network Analysis

Use linear algebra to study graphs


Graph, G

V, vertices (nodes)

E, edges (links)




degree of a node =

# edges incident to it.




nodes sharing an

edge are neighbors.




Network Analysis

Use linear algebra to study graphs


Graph, G

V, vertices (nodes)

E, edges (links)


Erdős Number

Facebook friends

Twitter followers

Search engines

Amazon/Netflix rec.

Protein interactions

Power grids

Google Maps

Air traffic control

Sports rankings

Cell tower placement

Scheduling

Parallel programming

Everything

Kevin Bacon






Network Analysis

Graph Properties


Diameter


Is everything just

a few hops away


from everything else?


Use linear algebra to study graphs




Network Analysis

Graph Properties


Diameter

Clustering
 Are there tightly-knit


groups of nodes?


Use linear algebra to study graphs




Network Analysis

Graph Properties


Diameter

Clustering

Connectivity


How well can each

node reach every 


other node?


Use linear algebra to study graphs




Network Analysis

Graph Properties


Diameter

Clustering

Connectivity


Linear Algebra

Eigenvalues and matrix 


functions shed light 

on all these questions.


These tools require a matrix

related to the graph…


Use linear algebra to study graphs




Graph Matrices

Adjacency matrix, A







Random-walk transition matrix, P


Aij = 1, if nodes i, j share an edge  (are adjacent)

0 otherwise


where       is the degree of node j.
djP ij = Aij/dj

Stochastic!  i.e. column-sums = 1




Network analysis via Heat Kernel


Uses include

Local clustering

Link prediction

Node centrality


Heat kernel is…


For G, a network’s                                matrix

random-walk,

adjacency,

Laplacian,


P

A

L


a graph diffusion

a function of a matrix


exp

(

G
)

=

1X

k=0

1

k !

Gk



Heat Kernel describes node connectivity 


(Ak )ij = # walks of length k from node i to j


For a small set of seed nodes, s, 

describes nodes most relevant to s


exp

(

A
)

s

“sum up” the walks 

between i and j


exp

(

A
)ij =

1X

k=0

1

k !

(Ak
)ij



diffusion score vector = f!

f =
1X

k=0

ckP
ks

P = random-walk

transition matrix


s = normalized

seed vector


ck = weight on

stage k


Diffusion score


p0
c0
 p1
c1
 p2
c2
 p3
c3


“diffusion scores” of a graph = "
weighted sum of probability vectors


+
+
 +
 + …




Heat Kernel vs. PageRank Diffusions

Heat Kernel uses tk/k! "


Our work is new analysis and 
algorithms for this diffusion.


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …


p0
𝛼0
 p1
𝛼1
 p2
𝛼2
 p3
𝛼3


PageRank uses 𝛼k at stage k."


Standard, widely-used diffusion 
we use for comparison.

Linchpin of Google’s original

success!




+
+
 +
 + …




PR


Heat Kernel vs. PageRank Theory


HK


good

clusters


fast 

algorithm


Local Cheeger Inequality:"
“PR finds near-optimal 

clusters”


existing constant-time 
algorithm


[Andersen Chung Lang 06]
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Local Cheeger Inequality 
[Chung 07]




PR


Heat Kernel vs. PageRank Theory


HK


good

clusters


fast 

algorithm


Local Cheeger Inequality:"
“PR finds near-optimal 

clusters”


existing constant-time 
algorithm


[Andersen Chung Lang 06]


Local Cheeger Inequality 
[Chung 07]
 Our work!



Algorithm outline


(1) Approximate with a polynomial

(2) Convert to linear system

(3) Solve with sparse linear solver







 
(Details in paper)


ˆ

x ⇡ exp

(

P
)

s



Algorithm outline


(1) Approximate with a polynomial

(2) Convert to linear system

(3) Solve with sparse linear solver







 
(Details in paper)


ˆ

x ⇡ exp

(

P
)

s

Ax

(k ) ⇡ b

r

(k ) := b � Ax

(k )

x

(k+1) := x

(k ) + Ar (k )
big

Gauss-Southwell

Sparse solver


“relax” largest

entry in r




Algorithm outline


(1) Approximate with a polynomial

(2) Convert to linear system

(3) Solve with sparse linear solver







 
(Details in paper)


We avoid doing these

full matrix-vector

products


Key:


ˆ

x ⇡ exp

(

P
)

s

exp

(

P
)

s ⇡
NX

k=0

1

k !

Pk s



Algorithm outline


(1) Approximate with a polynomial

(2) Convert to linear system

(3) Solve with sparse linear solver







 
(Details in paper)


We avoid doing these

full matrix-vector

products


Key:


ˆ

x ⇡ exp

(

P
)

s

exp

(

P
)

s ⇡
NX

k=0

1

k !

Pk s

(All my work was 
showing this 
actually can 


be done

with bounded 


error.)




Algorithms & Theory for
 ˆ

x ⇡ exp

(

P
)

s



Algorithm 1, Weak Convergence


- constant time on any graph, 


- outperforms PageRank in clustering


- accuracy:
 kD�1

x � D�1
x̂k1 < "

Õ( e1

" )



Algorithms & Theory for
 ˆ

x ⇡ exp

(

P
)

s



Conceptually

Diffusion vector quantifies node’s connection

to each other node. Divide each node’s score by its 
degree, delete the nodes with score < ε.






Only a constant number of nodes remain in G!






Users spend “reciprocated time” with O(1) others.


kD�1
x � D�1

x̂k1 < "



Algorithms & Theory for
 ˆ

x ⇡ exp

(

P
)

s



Algorithm 2, Global Convergence (conditional)






Power-law Degrees


 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 1 10 100 1000 10000

ra
nk

indegree

Realworld graphs have degrees distributed as 
follows. This causes diffusions to be localized.


Power-law degrees




Degrees of nodes 
in Ljournal-2008




Log-log scale


[Boldi et al., Laboratory for Web Algorithmics 2008]




Local solutions

Accuracy of approximation

using only large entries


Magnitude of entries

in solution vector
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1
k ! A
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Local solutions

Accuracy of approximation

using only large entries


Magnitude of entries

in solution vector


1 2 3 4 5
x 106

0

0.5

1

1.5

nnz = 4815948

m
ag

ni
tu

de

100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retained
100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retained

Only ~3,000 entries

For 10-4 accuracy!





has ~5 million nnz! 

1X

k=0

1
k ! A

k s



Algorithms & Theory for
 ˆ

x ⇡ exp

(

P
)

s



Algorithm 2, Global Convergence (conditional)


- sublinear (power-law)






- accuracy:
 kx � x̂k1 < "

˜O(d log d(1/")C
)



Algorithms & Theory for
 ˆ

x ⇡ exp

(

P
)

s

kx � x̂k1 < "

Conceptually

A node’s diffusion vector can be approximated with

total error < ε using only O(d log d) entries.



In realworld networks (i.e. with degrees following a 
power-law), no node will have nontrivial connection 
with more than O(d log d) other nodes.




Experiments




Runtime on the web-graph


|V| = O(10^8)

|E| = O(10^9)
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EXMPV
GSQ
GS

GSQ, GS: our methods

EXPMV: MatLab


A particularly sparse graph benefits us best




Thank you


Local clustering via heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow




Global heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit/

!







Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu


