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Preliminaries

Central theme:
How do walk structure and centrality behavior relate?
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Preliminaries

How do walk structure and centrality behavior relate?

FIX a graph matrix M diagonalizable
a vector function s(-) eg. 1,e;,eg
and suitable function /() DOS POWer Series

Positive Power Series:

An analytic function with a power series with
all positive coefficients: (1 — Bz)~ !, €°?




Preliminaries

How do walk structure and centrality behavior relate?

FIX a graph matrix M diagonalizable

a vector function s(-) eg. 1,e;,eg

and suitable function f() DOS POWer Series
Walk centrality Cf(],ﬁ) — [f(ﬁM)S(])]]

C(-,8) when context is clear




Questions

How do walk structure and centrality behavior relate?

Cr(J,8) = [f(BM)s(j)];

® when can /,) have same score”?
® what does it mean if they do?
® when can we say /,j never have same score’?

® [f// “walk the same” how do scores compare?
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Rank-trajectory plot

—ach curve represents a node in Zachary’s Karate Club
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Rank-trajectory plot

As [ varies, node rankings vary. WWhen nodes i,/ swap rank,
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Observations about questions...

® when can /,j have same score”
® what does it mean if they do?
® When can we say /,) never have same score’? *




Observations about questions...

® when can /,j have same score”

® what does it mean if they do?
® \when can we say i,/ never have same score? *

It 7,/ never collide, then Cr(j,8) > Cr(¢,8) forall 5,
.e., / IS always ranked above 1.

Sufficient Condition: If for £ € N [Mes(j)} > [MES(@')]

J 1

Then for all fand g, jranks above /. We say node
majorizes node /.




Nodes that majorize always rank higher

Sufficient Condition: If for ¢/ € N [MES(J')} > [MES(Z')]

¥i (4

Then for all fand 3, j ranks above i. We say node j
majorizes node /.

Proof sketch:




Nodes that majorize always rank higher

Sufficient Condition: If for ¢ € N [MES(J’)L > [MES(@')L

Then for all fand 3, j ranks above i. We say node j
majorizes node /.

Proof sketch: 0 a7 s .

Cf(jv B) — Zfﬁﬁ

-
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Nodes that majorize always rank higher

Sufficient Condition: If for ¢/ € N [MES(J')} > [MKS(@')]

¥i (4

Then for all fand 3, j ranks above i. We say node j
majorizes node /.
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“Partial” majorizing

What if j doesn’t have more k-walks for all k, just some”/




“Partial” majorizing

What if j doesn’t have more k-walks for all k, just some”/

[Horton, K., Sullivan]

Theorem. Let G be undirected and unweighted, and suppose nodes © and j
satisfy [Ael]j > [A%1); for £ =1,--- ,t. Then the Katz Centrality for nodes i

and j satisfies C(5,8) > C(i,8) for all B € (O, /\11 : (2\/5\1)1”).

Recall: Katz domain is (0, ,\i)
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“Partial” majorizing

What if j doesn’t have more k-walks for all k, just some”/

[Horton, K., Sullivan]

Theorem. Let G be undirected and unweighted, and suppose nodes © and j
satisfy [Ael]j > [A%1); for £ =1,--- ,t. Then the Katz Centrality for nodes i

and j satisfies C(5,8) > C(i,8) for all B € (O, /\11 : (2\/5\1)1”).

Our bound makes explicit the rate of convergence here:

Theorem: [Klymko, Benzi 2015] “On the Limiting behavior...”
For f, M, nonnegative s,

degree centrality, as 8 — 07T
Cf(7 5) — . . _
eigenvector centrality, as 8 — 5. ...




Questions

® when can /,j have same score”

® When can we say /,) never have same score’?

e
® what does it mean if they do? e




Back to collisions...
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Number of collisions is hounded

Theorem: [Benzi, 2014]

If 6?}4 = eﬁA for all 5 in a set with an accumulation point,

then it holds for all (5 .
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Number of collisions is hounded

Theorem: [Benzi, 2014]

If 6?}4 = eﬁA for all 5 in a set with an accumulation point,

then it holds for all (5 .

Theorem: [Horton, K., Sullivan]
If C¢(4,8) = Cr(i, B) for an infinite number of 5,
then it holds for all & in the domain of f.

Proof: We show C is analytic and use the |dentity Theorem.

Corollary:

This proves that the number of distinct rankings C#(+, )
Produces is finite!




Number of collisions is hounded

. Degree of min pol
Theorem: [Horton, K., Sullivan] J POy

If fis the resolvent, (1 — Bz)~*, then i collide <= m-1 times,
unless they collide for all 3 .




Number of collisions is hounded

. Degree of min pol
Theorem: [Horton, K., Sullivan] J POy

If fis the resolvent, (1 — Bz)~*, then i collide <= m-1 times,
unless they collide for all 3 .

Corollary: [Horton, K., Sullivan]
PageRank and Katz induce at most O(n\3) distinct rankings.

® Trivial upper bound is (n!)
® Do other finduce more rankings” Is that better”

® [Find a bound for f(x) = eAX




Too many collisions...

What causes /,j to have “too many” collisions?
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Questions

How do walk structure and centrality behavior relate?

Cr(J,8) = [f(BM)s(j)];

® when can /,/ have same score”
® what does it mean if they do? Q
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Questions

How do walk structure and centrality behavior relate?

Cr(J,8) = [f(BM)s(j)];

® when can /,) have same score”?
® what does it mean if they do?
® when can we say /,j never have same score’?

® |/ “walk the same” how do scores compare?

Nodes i,j have “too many” collisions iff same walk structure




Walk structure determines centrality behavior

C(j,B8) =S fuB* | M"s(j)
k=0 ]
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Walk structure determines centrality behavior

k=0

degree of
Proposition: / min poly of M
If fork=0, ..., m-T1 then for all f and B

M) = |M's()| - Cp(5,0) = Cy(i, B)

] 1




Walk structure determines centrality behavior

|dentical walk structure...

—> |dentical walk centrality

degree of
Proposition: / min poly of M
If fork=0, ..., m-T1 then for all f and B

M) = |M's()| - Cp(5,0) = Cy(i, B)

] 1




Walk structure determines centrality behavior

|dentical walk structure...

{-} |dentical walk centrality

Theorem: [Horton, K., Sullivan]
If C¢(4,8) = C(i, B) for an infinite number of 5,
then it holds for all 8 in the domain of f.




Walk-classes and iso-centrality

Definition:

A walk-class = all nodes in G with identical “walk tuples”

([M°s(3)],, [M's(7)], -, [M™s()])




Walk-classes and iso-centrality

Definition:
A walk-class = all nodes in G with identical “walk tuples”

([M°s(3)],, [M's(7)], -, [M™s()])

J

Theorem: [Horton, K., Sullivan] The following are equivalent:
1. Nodes |/, are In the same walk-class

2. Nodes /) have >= m Katz collisions

3. Nodes /) have identical walk centrality:

Cy(3,8) = C¢(2,8) for all fand 3




Walk-classes and iso-centrality

Definition:

We say nodes satisfying these properties are isocentral.

Theorem: [Horton, K., Sullivan] The following are equivalent:
1. Nodes |/, are In the same walk-class

2. Nodes /) have >= m Katz collisions

3. Nodes /) have identical walk centrality:

Cy(3,8) = C¢(2,8) for all fand 3




Node Rank

Walk-classes in Zachary’s Karate Club

Rank-plot for Katz
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Node Rank

Walk-classes in Zachary’s Karate Club

Total communicability, merged
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Collisions are abundant; Iso-centrality is not

Collisions Walk-classes merged
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Walk-classes and iso-centrality

Definition:

We say nodes satisfying these properties are isocentral.

Theorem: [Horton, K., Sullivan] The following are equivalent:
1. Nodes |/, are In the same walk-class

2. Nodes /) have >= m Katz collisions

3. Nodes /) have identical walk centrality:

Cy(3,8) = C¢(2,8) for all fand 3

4, Nodes /,j have the "same” eigenvector centrality




Walk-class determines centrality behavior

Theorem. Let M € R™ ™ be diagonalizable with |\1| > --- > |\, and eigen-
decomposition M = >, A\ VUL . Then nodes i,j are in the same walk-class

if and only if [V, UR s(i)]; = [V U7}, s(5)]; holds for k=1,--- ,m.




Walk-class determines centrality behavior

Theorem. Let M € R™ ™ be diagonalizable with |\1| > --- > |\, and eigen-
decomposition M = >, A\ VUL . Then nodes i,j are in the same walk-class

if and only if [V, UR s(i)]; = [V U7}, s(5)]; holds for k=1,--- ,m.

Theorem:
Nodes in a walk-class have “same” eigenvector centrality:

I,/ INn the same walk-class if and only if
VULs(i)]; = [ViULs(4)]; foreachk=1,...,m




Walk-class determines centrality behavior

Depending on s and M, this means /, j have same...

- Perron-Frobenius — eigenvector score

- Fledler vector — score magnitude

- spectral clustering —positions symmetric in embedding

Theorem:

Nodes in a walk-class have “same” eigenvector centrality:

I,/ INn the sa
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and only If

j foreachk=17,...,m




Walk-class determines centrality behavior

Example Nodes in a walk-class <-> same spectral clustering

T




Walk-class determines centrality behavior

Example Nodes in a walk-class <-> same spectral clustering
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Walk-class determines centrality behavior

Example Nodes in a walk-class <-> same spectral clustering

8 High-light walk classes




Walk-class determines centrality behavior

Example Nodes in a walk-class <-> same spectral clustering

8 cluster by e/ U,

10




Walk-class determines centrality behavior

Example Nodes in a walk-class <-> same spectral clustering

8 “‘same” position in cluster
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Walk-class -> centrality: take-aways

® [so-centrality can occur in real networks

® But It’'s rare

® Usual cause: small symmetries, e.g.
two nodes that have same neighborhood

® |so-central nodes have identical walk-centrality,
walk structure, and “same” eigen-centrality




Thank you!
Concluding thoughts:

® [he more j (partially) majorizes /,

the larger interval near O where j ranks above |/

® # collisions Is finite, unless nodes are iso-central

® |so-central nodes rare; same walk- and eigen-centrality

-uture work: Better understand collision bounds, effect on
ranking




Bonus slides, If time




Walk-classes in Spider Donuts

The spider donut graph family:

® [his spider donut has exactly 3 walk-classes
® Constructed so they collide simultaneously
® Also constructed a 4-walk-class spider donut, all 4 class collide simultaneously

® Motivation: wanted to understand how many walk-classes can be involved in one collision at a single
parameter value.




