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Scaling graph analytics

Broader Problem

• Many global graph analytics scale poorly to large graphs

Case study

• Speed up overlapping clustering:
– Link Clustering

– Baselines: Infomap, BigCLAM

[Ahn, Bagrow, Lehmann, Nature 2010] , [Rosvall, Bergstrom, PNAS 2008] , 
[ Yang, Leskovec, ICDM 2013]
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Scaling graph analytics

Broader Problem

• Many global graph analytics scale poorly to large graphs

Case study

• Speed up overlapping clustering:
– Link Clustering

– Baselines: Infomap, BigCLAM

Our problem

• Even state-of-the-art algorithms scale poorly

This talk

• Tight complexity analysis -> identify, alleviate bottlenecks

[Ahn, Bagrow, Lehmann, Nature 2010] , [Rosvall, Bergstrom, PNAS 2008] , 
[ Yang, Leskovec, ICDM 2013]
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Our focus: Link Clustering

• Detect communities by partitioning the edges

• A node belongs to all communities that its edges do!

Ahn, Bagrow, Lehmann, “Link communities reveal multiscale complexity in 
networks.” Nature, 2010.

Node clustering Link clustering



Communities - 5
MTS 11/17/15

Which property describes scaling?

Features:

• Edges

• Maximum node degree

• Nodes

• Wedges
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Link Clustering - Overview
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Ahn, Bagrow, Lehmann, “Link communities reveal multiscale complexity in 
networks.” Nature, 2010.
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Link Clustering
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Ahn, Bagrow, Lehmann, “Link communities reveal multiscale complexity in 
networks.” Nature, 2010.

Compute Jaccard Similarity of any 2 edges that share a node.

Jaccard Similarity:

         | neighborhood intersection |

              | neighborhood union |

Kyle Kloster
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Link Clustering

A

Links

B C D E

Ahn, Bagrow, Lehmann, “Link communities reveal multiscale complexity in 
networks.” Nature, 2010.

B,C
D,E
A,C
A,B
B,D
C,E
A,D
A,E
B,E
C,D

Sort all pairs of edges (wedges) by their Jaccard Similarity.

Combine clusters with highly similar edges.
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Link Clustering: tight complexity
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Link Clustering
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Ahn, Bagrow, Lehmann, “Link communities reveal multiscale complexity in 
networks.” Nature, 2010.

Number of wedges at a node = 

(degree choose 2) ~ degree^2

Large degree nodes (hubs) bad...
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Tight complexity identifies bottlenecks

• Sorting = dominant subroutine

• Runtime scales with wedges …

– Hubs cause ~O(n^2) wedges!

Bottlenecks: hubs, sorting

Degree is the maximum degree (number of neighbors) in graph
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Similarity scores are structured

• is a fraction: denominator, 
numerator are integers in

     [ 1 , 2*max degree ]

• We show this implies small 
number of distinct scores...

• Enables linear-time sort!

• “Shelf” sort: bucket/counting

Jaccard Similarity:
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Shelf Sort

K. Kloster, D.F. Gleich (2015) Personalized PageRank Solution Paths.
http://arxiv.org/abs/1503.00322
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Handling Hub Bottlenecks

• Claim: large degree nodes (hubs) can be removed
– often meaningless (Spammers)

– often uninformative (Twitter: Bieber, Obama; bio examples)

– if important, worth processing individually

• Hubs drive up runtime
– Hub -> ~n^2 wedges

• Hubs can obscure smaller-scale
community structure
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Hub Removal

Remove 
hubs

Remove 
hubs ClusterCluster Reintroduce 

hubs
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• Add hubs only to clusters they strongly connect to



Communities - 16
MTS 11/17/15

~10,000 X faster

Preserves quality
of clustering!
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Conclusions

Scaling graph analytics:

• Tighter complexity analysis can reveal bottlenecks

– Runtime = O( sorting wedges )

– Dominant subroutines, problematic graph features

•  Exploiting bottleneck analysis

– Remove bottleneck graph feature; handle separately?

– Graphs are discrete -> structure! (e.g. sorting = linear)

• Context can guide handling bottleneck

– are your bottlenecks disposable? (spam, Justin Bieber)

– … worth processing separately?
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