Scaling Overlapping Clustering

Kyle Kloster
(now at NCSU)

Merrielle Spain
Stephen Kelley

]@ LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This work is sponsored under Air Force Contract FA8721-05-C-0002. Opinions, DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.
interpretations, conclusions and recommendations are those of the author and are not
necessarily endorsed by the United States Government.




@ Scaling graph analytics

Broader Problem

* Many global graph analytics scale poorly to large graphs
Case study
* Speed up overlapping clustering:

— Link Clustering
— Baselines: Infomap, BigCLAM
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]@ Scaling graph analytics

Broader Problem
* Many global graph analytics scale poorly to large graphs
Case study

* Speed up overlapping clustering:
— Link Clustering
— Baselines: Infomap, BigCLAM

Our problem

* Even state-of-the-art algorithms scale poorly
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@ Our focus: Link Clustering

* Detect communities by partitioning the edges

* A node belongs to all communities that its edges do!

Node clustering Link clustering
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@ Which property describes scaling?

Features:
* Edges
* Maximum node degree

* Nodes

* Wedges Ogo
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@ Link Clustering - Overview

Merge

. o OYE similarities clusters
similarities
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@ Link Clustering

Compute Jaccard Similarity of any 2 edges that share a node.

O%O

Jaccard Similarity:

| neighborhood intersection |

| neighborhood union |
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]@ Link Clustering

Sort all pairs of edges (wedges) by their Jaccard Similarity.

Combine clusters with highly similar edges.
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[E]

Link Clustering: tight complexity

alculate
edge

similarities

O(wedges)

Sort Merge -

O(wedges x log,(wedges))

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



]@ Link Clustering

eage —/

similarities

Number of wedges at a node =

(degree choose 2) ~ degree/\2

Large degree nodes (hubs) bad...

communites - 10 Ahn, Bagrow, Lehmann, “Link communities reveal multiscale complexity in 1 INCOLN LABORATORY
networks.” Nature, 2010. MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Tight complexity identifies bottlenecks

* Sorting = dominant subroutine

* Runtime scales with wedges ...

- Hubs cause ~O(n"2) wedges!

Bottlenecks: hubs, sorting
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@ Similarity scores are structured

Is a fraction: denominator,
numerator are integers in

Jaccard Similarity:

[1, 2*max degree ]

* We show this implies small
number of distinct scores...

e Enables linear-time sort!

* “Shelf” sort: bucket/counting

O(wedges x log,(wedges)) ——»  O(wedges)
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]@ Shelf Sort

1
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]@ Handling Hub Bottlenecks

* Claim: large degree nodes (hubs) can be removed
- often meaningless (Spammers)
- often uninformative (Twitter: Bieber, Obama; bio examples)

- if important, worth processing individually

* Hubs drive up runtime
— Hub -> ~n"2 wedges

* Hubs can obscure smaller-scale
community structure
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@ Hub Removal

* Add hubs only to clusters they strongly connect to
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~10,000 X faster
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Preserves quality
of clustering!
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]@ Conclusions

Scaling graph analytics:

* Tighter complexity analysis can reveal bottlenecks
- Runtime = O( sorting wedges )
- Dominant subroutines, problematic graph features
* Exploiting bottleneck analysis
- Remove hottleneck graph feature; handle separately?
- Graphs are discrete -> structure! (e.g. sorting = linear)

* Context can guide handling bottleneck
- are your bottlenecks disposable? (spam, Justin Bieber)
- ... worth processing separately?
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