

Local community structure
in social & information

networks

Kyle Kloster!
Purdue University!

Joint with

David F. Gleich,

(Purdue), supported by"
NSF CAREER

1149756-CCF

Network analysis via Heat Kernel

Uses include

Local community detection

Link prediction

Node centrality

What is it?

For G, a network’s matrix

random-walk,

adjacency,

Laplacian,

P

A

L

a graph diffusion

a function of a matrix

exp

(

G
)

=

1X

k=0

1

k !

Gk

Heat Kernel describes node connectivity

(Ak)ij = # walks of length k from node i to j

For a small set of seed nodes, s,

describes nodes most relevant to s

exp

(

A
)

s

“sum up” the walks

between i and j

exp

(

A
)ij =

1X

k=0

1

k !

(Ak
)ij

Big data, big slowdown

 diameter ~ 4

 ~ O(109) #nodes

 ~ O(1010) #edges = |E|

 constantly changing

And real-world

networks are

exp

(

A
)

s
1X

k=0

1
k ! A

k s each term takes

O(|E|) work!

=

à speed is a priority over accuracy

Local solution, big speedup

Accuracy of approximation

using only large entries

Magnitude of entries

in solution vector

1 2 3 4 5
x 106

0

0.5

1

1.5

nnz = 4815948

m
ag

ni
tu

de

100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retained
100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retainedhas ~5 million nnz!

1X

k=0

1
k ! A

k s

Local solution, big speedup

Accuracy of approximation

using only large entries

Magnitude of entries

in solution vector

1 2 3 4 5
x 106

0

0.5

1

1.5

nnz = 4815948

m
ag

ni
tu

de

100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retained
100 101 102 103 104 105 106

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1−
no

rm
 e

rro
r

largest non−zeros retained

Only ~3,000 entries

For 10-4 accuracy!

has ~5 million nnz!

1X

k=0

1
k ! A

k s

Local solution, local algorithm

A local algorithm approximates solution

in work proportional to output size (~3,000)

instead of whole graph (~109)

For fast heat kernel,

we want local algorithms!

Our algorithms for

ˆ

x ⇡ exp

(

P
)

s

Local community detection:

- constant time on any graph,

- outperforms PageRank

- accuracy:
 kD�1

x � D�1
x̂k1 < "

Õ(e1

")

Link prediction, ranking:

- sublinear local method

(on networks with power-law degree dist.)

- accuracy:
 kx � x̂k1 < "

Õ(d2 log2 d)

Local Community Detection

Given seed(s) S in G, find a community that contains S.

seed

“Community” ?

Local Community Detection

Given seed(s) S in G, find a community that contains S.

seed

high internal, low
external connectivity !

“Community” ?

Low-conductance sets are communities

conductance(T) =
 # edges leaving T

edge endpoints in T

= “ chance a random step exits T ”

Low-conductance sets are communities

conductance(T) =
 # edges leaving T

edge endpoints in T

= “ chance a random step exits T ”

How to find these ?!

conductance(comm) =
39/381 = .102

Graph diffusions find low-conductance sets

seed

A diffusion propagates “rank” from a seed across a graph.

= high!
= low! diffusion value!

Graph diffusions find low-conductance sets

seed

A diffusion propagates “rank” from a seed across a graph.

= high!
= low! diffusion value!

= local community / !
 low-conductance set!

Okay…"
how does this work?

Graph Diffusion

p0
 p1
 p2
 p3

seed

 …

A diffusion models how a mass
(green dye, money, popularity)
spreads from a seed across a
network.

p0
 p1
 p2
 p3

seed

“diffuse”

 …

A diffusion models how a mass
(green dye, money, popularity)
spreads from a seed across a
network.

Graph Diffusion

p0
 p1
 p2
 p3

seed

 …

“diffuse”

A diffusion models how a mass
(green dye, money, popularity)
spreads from a seed across a
network."

Once mass reaches a node, it
propagates to the neighbors,
with some decay.

“decay”: dye dilutes, money is taxed, popularity fades

Graph Diffusion

p0
 p1
 p2
 p3

seed

“diffuse”

 …

A diffusion models how a mass
(green dye, money, popularity)
spreads from a seed across a
network.

"
Once mass reaches a node, it
propagates to the neighbors,
with some decay.

“decay”: dye dilutes, money is taxed, popularity fades

Graph Diffusion

p0
 p1
 p2
 p3

seed

 …

A diffusion models how a mass
(green dye, money, popularity)
spreads from a seed across a
network."

Once mass reaches a node, it
propagates to the neighbors,
with some decay.

“decay”: dye dilutes, money is taxed, popularity fades

Graph Diffusion

p0
c0
 p1
c1
 p2
c2
 p3
c3

“diffusion score” of a node = "
weighted sum of the mass at that
node during different stages.
 +
+
 +
 + …

Diffusion score

diffusion score vector = f!

f =
1X

k=0

ckP
ks

P = random-walk

transition matrix

s = normalized

seed vector

ck = weight on

stage k

Diffusion score

p0
c0
 p1
c1
 p2
c2
 p3
c3

“diffusion score” of a node = "
weighted sum of the mass at that
node during different stages.
 +
+
 +
 + …

Heat Kernel vs. PageRank Diffusions

Heat Kernel uses tk/k! "

Our work is new analysis for this
diffusion.

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

p0
𝛼0
 p1
𝛼1
 p2
𝛼2
 p3
𝛼3

PageRank uses 𝛼k at stage k."

Standard, widely-used diffusion
we use for comparison.

+
+
 +
 + …

Heat Kernel vs. PageRank Behavior

0 20 40 60 80 100

10−5

100

t=1 t=5 t=15 α=0.85

α=0.99

W
ei
gh
t

Length

HK emphasizes earlier stages of diffusion.

à involve shorter walks from seed,

à so HK looks at smaller sets than PR

HK, tk/k!

PR, 𝛼k

PR

Heat Kernel vs. PageRank Theory

HK

good

conductance

fast

algorithm

Local Cheeger Inequality:"
“PR finds set of near-
optimal conductance”

“PPR-push” is O(1/(ε(1-𝛼)))

in theory, fast in practice

[Andersen Chung Lang 06]

PR

Heat Kernel vs. PageRank Theory

HK

good

conductance

fast

algorithm

Local Cheeger Inequality:"
“PR finds set of near-
optimal conductance”

“PPR-push” is O(1/(ε(1-𝛼)))

in theory, fast in practice

[Andersen Chung Lang 06]

Local Cheeger Inequality
[Chung 07]

PR

Heat Kernel vs. PageRank Theory

HK

good

conductance

fast

algorithm

Local Cheeger Inequality:"
“PR finds set of near-
optimal conductance”

“PPR-push” is O(1/(ε(1-𝛼)))

in theory, fast in practice

[Andersen Chung Lang 06]

Local Cheeger Inequality
[Chung 07]
 Our work!

Our work on Heat Kernel: theory

THEOREM Our algorithm for a relative"
 ε-accuracy in a degree-weighted norm has

runtime <= O(et(log(1/ε) + log(t)) / ε)

 (which is constant, regardless of graph size)

Our work on Heat Kernel: theory

THEOREM Our algorithm for a relative"
 ε-accuracy in a degree-weighted norm has

runtime <= O(et(log(1/ε) + log(t)) / ε)

 (which is constant, regardless of graph size)

COROLLARY HK is local!

(O(1) runtime à diffusion vector has O(1) entries)!

Our work on Heat Kernel: results

First efficient, deterministic HK algorithm. Deterministic
is important to be able to compare the behaviors of
HK and PR experimentally:

Our key findings!
•  HK more accurately describes ground-truth

communities in real-world networks!
•  identifies smaller sets à better precision

•  speed & conductance comparable with PR

Python"
demo

Twitter graph

41.6 M nodes

2.4 B edges

un-optimized Python code

on a laptop

Available for download:

https://gist.github.com/dgleich/cf170a226aa848240cf4

Algorithm Outline

Computing HK!

1. Pre-compute “push” thresholds

2. Do “push” on all entries above threshold

Algorithm Intuition

Computing HK given parameters t, ε, seed s!

Starting from here…

How to end up here?

p0
 p1
 p2
 p3

seed

 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

Algorithm Intuition

Begin with mass at seed(s)

in a “residual” staging area, r0

The residuals rk hold mass that
is unprocessed – it’s like error

r0
 r1
 r2
 r3

seed

 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

Push Operation

push – (1) remove entry in rk,"
 (2) put in p,

r0
 r1
 r2
 r3
 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

push – (1) remove entry in rk,"
 (2) put in p,

 (3) then scale and

 spread to neighbors

 in next r!

r0
 r1
 r2
 r3
 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

t1

1!

Push Operation

Push Operation

r0
 r1
 r2
 r3
 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

t2

2!

push – (1) remove entry in rk,"
 (2) put in p,

 (3) then scale and

 spread to neighbors

 in next r

(repeat)

Push Operation

r0
 r1
 r2
 r3
 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

t2

2!

push – (1) remove entry in rk,"
 (2) put in p,

 (3) then scale and

 spread to neighbors

 in next r

(repeat)

Push Operation

r0
 r1
 r2
 r3
 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

t2

2!
 t3

3!

push – (1) remove entry in rk,"
 (2) put in p,

 (3) then scale and

 spread to neighbors

 in next r

(repeat)

Thresholds

ERROR equals weighted sum

of entries left in rk

à  Set threshold so “leftovers”

sum to < ε

r0
 r1
 r2
 r3
 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

entries < threshold

Thresholds

ERROR equals weighted sum

of entries left in rk

à  Set threshold so “leftovers”

sum to < ε

r0
 r1
 r2
 r3
 …

p0
t0

0!

p1
 p2
 p3
+
+
 +
t1

1!

t2

2!

t3

3!
 + …

entries < threshold

Threshold for stage rk is"

 sum of remaining scale factors"
 prior scaling factor

Algorithm Outline

Computing HK!

1. Pre-compute “push” thresholds

2. Do “push” on all entries above threshold

Once no more entries are > threshold: convergence!

Communities in Real-world Networks

Given a seed in an unidentified real-world community,

how well can HK and PR describe that community?

Measure quality using F1-measure.

F1-measure

is the harmonic mean of "

precision
 =
 # correct guesses

total guesses

recall
 =
 # answers you get

answers there are

and

Graph |V | |E|
amazon 330 K 930 K
dblp 320 K 1 M
youtube 1.1 M 3 M
lj 4 M 35 M
orkut 3.1 M 120 M
friendster 66 M 1.8 B

Datasets from SNAP collection [Leskovec]

data F
1

precision set size comm

HK PR HK PR HK PR size

amazon 0.325 0.140 0.244 0.107 193 15293 495

dblp 0.257 0.115 0.208 0.081 44 16026 1429

youtube 0.177 0.136 0.135 0.098 1010 6079 1615

lj 0.131 0.107 0.102 0.086 283 738 662

orkut 0.055 0.044 0.036 0.031 537 1989 4526

friendster 0.078 0.090 0.066 0.075 229 333 724

data F
1

precision set size comm

HK PR HK PR HK PR size

amazon 0.325 0.140 0.244 0.107 193 15293 495

dblp 0.257 0.115 0.208 0.081 44 16026 1429

youtube 0.177 0.136 0.135 0.098 1010 6079 1615

lj 0.131 0.107 0.102 0.086 283 738 662

orkut 0.055 0.044 0.036 0.031 537 1989 4526

friendster 0.078 0.090 0.066 0.075 229 333 724

PR achieves high
recall by “guessing” a
huge set

HK identifies a tighter
cluster, so attains
better precision

Runtime &"
Conductance"
"
 HK is comparable in
runtime and conductance."
"
"
As graphs scale,"
the diffusions’ performance
becomes even more similar.

5 6 7 8 9
0

0.5

1

1.5

2
Runtime: hk vs. ppr

log10(|V|+|E|)

R
un

tim
e

(s
)

hkgrow 50%
25%
75%
pprgrow 50%
25%
75%

5 6 7 8 9

10−2

10−1

100
Conductances: hk vs. ppr

log10(|V|+|E|)

lo
g1

0(
C

on
du

ct
an

ce
s)

hkgrow 50%
25%
75%
pprgrow 50%
25%
75%

Algorithms for
 ˆ

x ⇡ exp

(

P
)

s

Constant time local community detection

Link prediction, ranking:

- sublinear local method

(on networks with power-law degree dist.)

- accuracy:
 kx � x̂k1 < "

Õ(d2 log2 d)

Algorithm 2 outline

(1) Approximate with a polynomial

(2) Convert to linear system

(3) Solve with sparse linear solver

(Details in paper)

ˆ

x ⇡ exp

(

P
)

s

Algorithm 2 outline

(1) Approximate with a polynomial

(2) Convert to linear system

(3) Solve with sparse linear solver

(Details in paper)

We avoid doing these

full matrix-vector

products

Key:

ˆ

x ⇡ exp

(

P
)

s

exp

(

P
)

s ⇡
NX

k=0

1

k !

Pk s

Fill-in vs. local solution

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1X

k=0

1
k ! A

k s

Nonzeros in the terms

A1s A2s A3s A4s

Magnitude of entries

in solution vector

Runtime

103 104 105 106

10−4

10−2

100

|E| + |V|

Ru
nt

im
e

(s
ec

s)
.

TSGS
TSGSQ
EXPV
MEXPV
TAYLOR

TSGSQ is ours, EXPV is a state-of-the-art

MatLab function

Runtime on the web-graph

|V| = O(10^8)

|E| = O(10^9)

0 10 20 30
0

20

40

60

80

100

120

140

Trial

Ti
m

e
(s

ec
)

EXMPV
GSQ
GS

GSQ is our method

EXPMV is MatLab

A particularly sparse graph benefits us best

Precision vs. work

We accurately identify large entries!

10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

dblp−cc

Effective matrix−vector products

Pr
ec

is
io

n

to
l=

10
−4

to
l=

10
−5

@10
@25
@100
@1000

Code, references, future work

Local clustering via heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Global heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit/

!

Ongoing work!
-  generalizing to other diffusions

-  simultaneously compute multiple diffusions

Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu

