Local community structure in social & information networks

Joint with David F. Gleich, (Purdue), supported by NSF CAREER 1149756-CCF

Kyle Kloster Purdue University

Network analysis via Heat Kernel

Uses include Local community detection Link prediction Node centrality

What **is** it?

a graph diffusion a function of a matrix $\exp(\mathbf{G}) = \sum_{k=1}^{\infty} \frac{1}{k!} \mathbf{G}^{k}$ k=0For **G**, a network's random-walk, **P** adjacency, **A** Laplacian, **L**

Heat Kernel describes node connectivity

 $(\mathbf{A}^{\kappa})_{ij} = \#$ walks of length k from node *i* to *j*

$$\exp(\mathbf{A})_{ij} = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{A}^k)_{ij}$$

"sum up" the walks between *i* and *j*

For a small set of seed nodes, **s**, exp(A) s describes nodes most relevant to **s**

Big data, big slowdown

$$\exp(\mathbf{A}) \mathbf{s} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} \mathbf{s}$$
 each term takes
O(|E|) work!

And real-world networks are

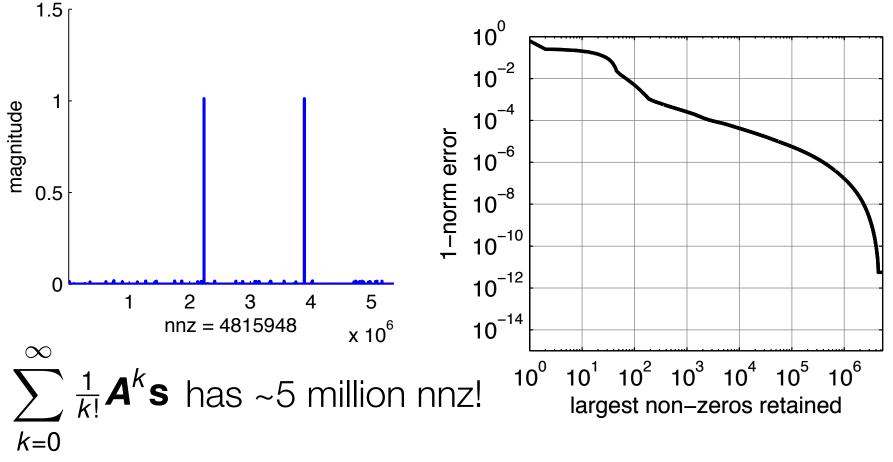
diameter ~ 4 ~ $O(10^9)$ #nodes ~ $O(10^{10})$ #edges = |E| constantly changing

→ **speed** is a priority over accuracy

Local solution, big speedup

Magnitude of entries in solution vector

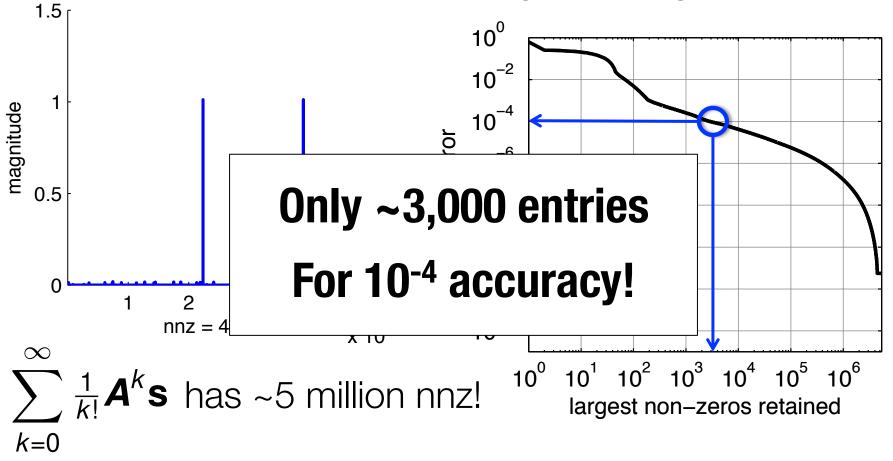
Accuracy of approximation using only large entries



Local solution, big speedup

Magnitude of entries in solution vector

Accuracy of approximation using only large entries



Local solution, local algorithm

A **local algorithm** approximates solution in work proportional to output size (~3,000) instead of whole graph (~10⁹)

For fast heat kernel, we want local algorithms!

Our algorithms for $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$

Local community detection:

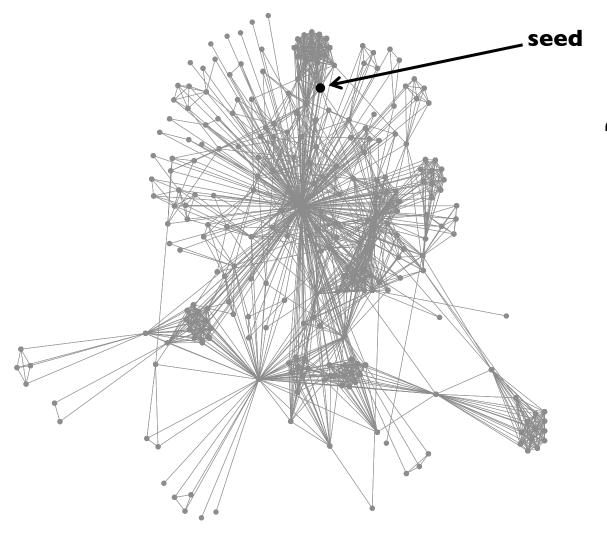
- constant time on any graph, $\tilde{O}(\frac{e'}{c})$
- outperforms PageRank
- accuracy: $\|\boldsymbol{D}^{-1}\boldsymbol{x} \boldsymbol{D}^{-1}\hat{\boldsymbol{x}}\|_{\infty} < \varepsilon$

Link prediction, ranking:

- sublinear local method $\tilde{O}(d^2 \log^2 d)$ (on networks with power-law degree dist.)
- accuracy: $\|\mathbf{X} \hat{\mathbf{X}}\|_1 < \varepsilon$

Local Community Detection

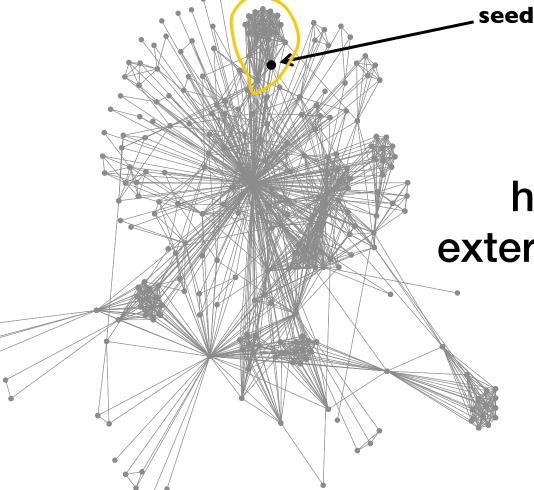
Given seed(s) S in G, find a community that contains S.



"Community"?

Local Community Detection

Given seed(s) S in G, find a community that contains S.



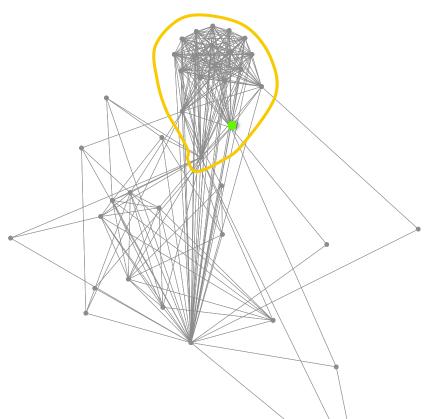
"Community"?

high internal, low external connectivity

Low-conductance sets are communities

conductance(T) = $\frac{\# \text{ edges leaving } T}{\# \text{ edge endpoints in } T}$

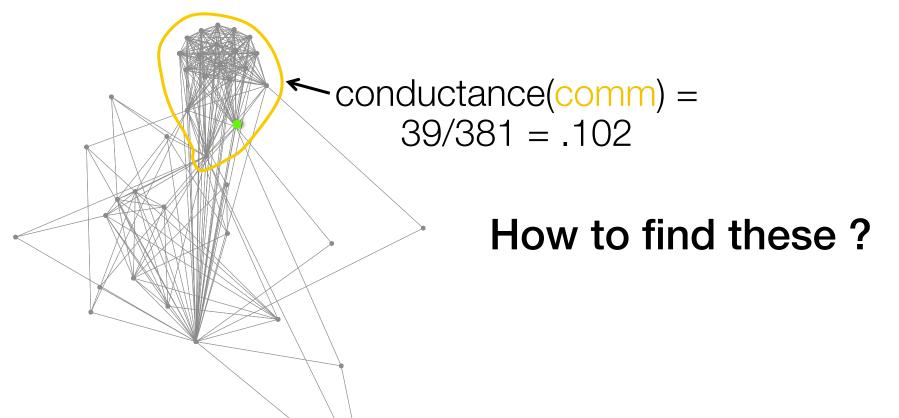
= " chance a random step exits T "



Low-conductance sets are communities

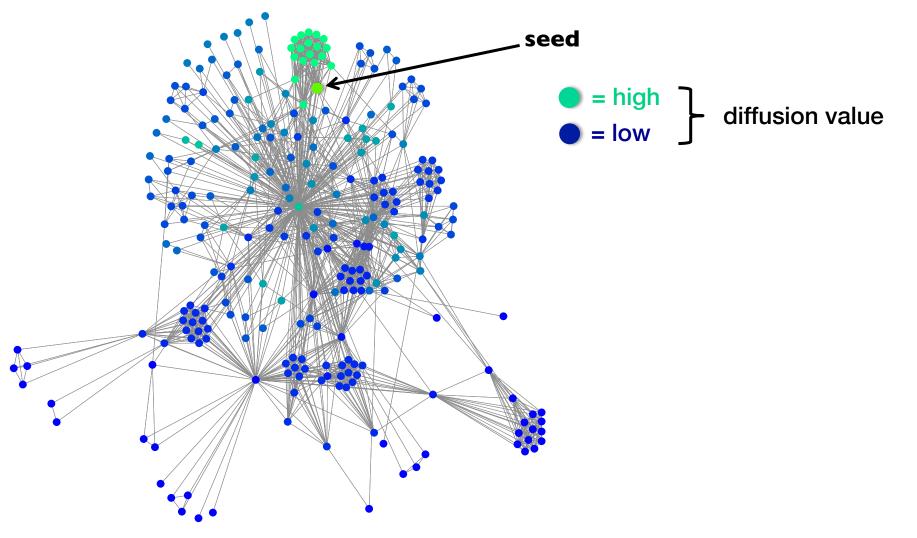
conductance(T) = $\frac{\# \text{ edges leaving } T}{\# \text{ edge endpoints in } T}$

= " chance a random step exits T "



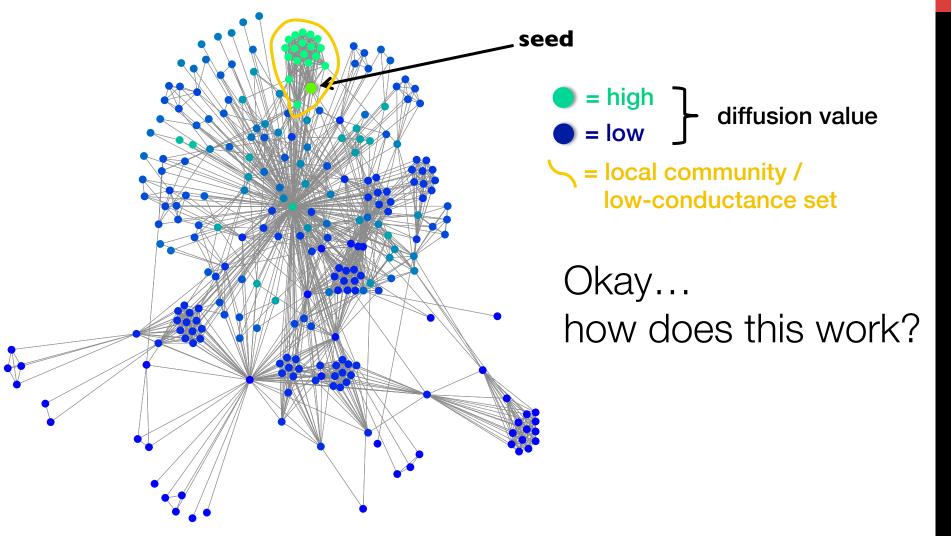
Graph diffusions find low-conductance sets

A diffusion propagates "rank" from a seed across a graph.

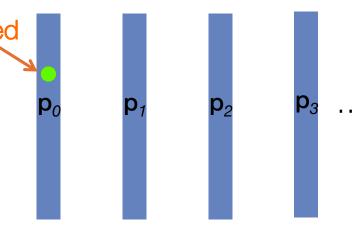


Graph diffusions find low-conductance sets

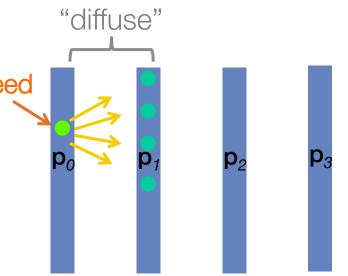
A diffusion propagates "rank" from a seed across a graph.



A diffusion models how a mass seed (green dye, money, popularity) spreads from a seed across a network.



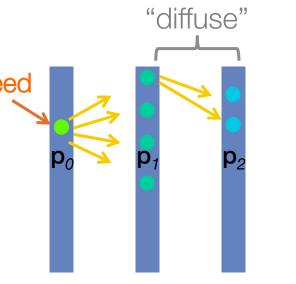
A diffusion models how a mass seed (green dye, money, popularity) spreads from a seed across a network.



A diffusion models how a mass seed (green dye, money, popularity) spreads from a seed across a network.

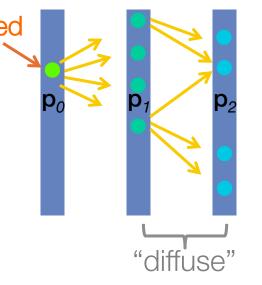
Once mass reaches a node, it propagates to the neighbors, with some decay.

"decay": dye dilutes, money is taxed, popularity fades



A diffusion models how a mass seed (green dye, money, popularity) spreads from a seed across a network.

Once mass reaches a node, it propagates to the neighbors, with some decay.

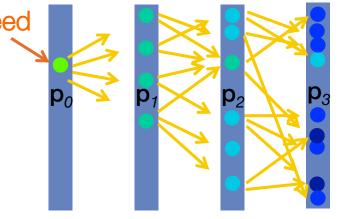


p₂

A diffusion models how a mass seed (green dye, money, popularity) spreads from a seed across a network.

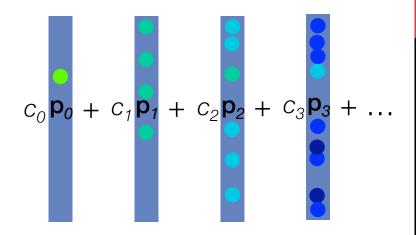
Once mass reaches a node, it propagates to the neighbors, with some decay.

"decay": dye dilutes, money is taxed, popularity fades



Diffusion score

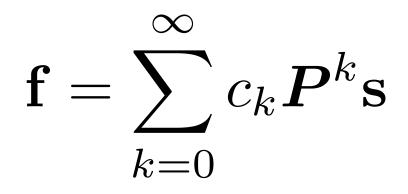
"diffusion score" of a node = weighted sum of the mass at that node during different stages.

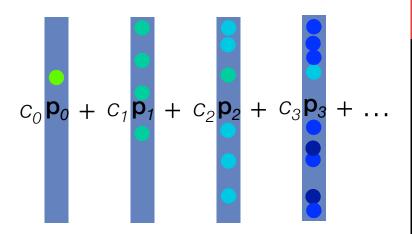


Diffusion score

"diffusion score" of a node = weighted sum of the mass at that node during different stages.

diffusion score vector = \mathbf{f}





- P = random-walk transition matrix
 - ____ normalized

S

 c_k

- seed vector
- weight on
 - stage *k*

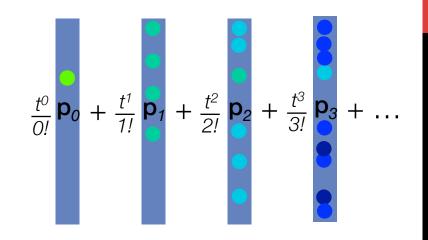
Heat Kernel vs. PageRank Diffusions

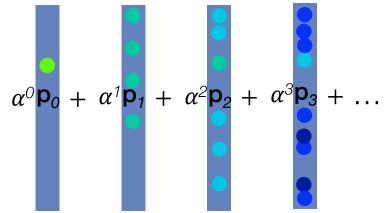
Heat Kernel uses tk/k!

Our work is new analysis for this diffusion.

PageRank uses α^k at stage k.

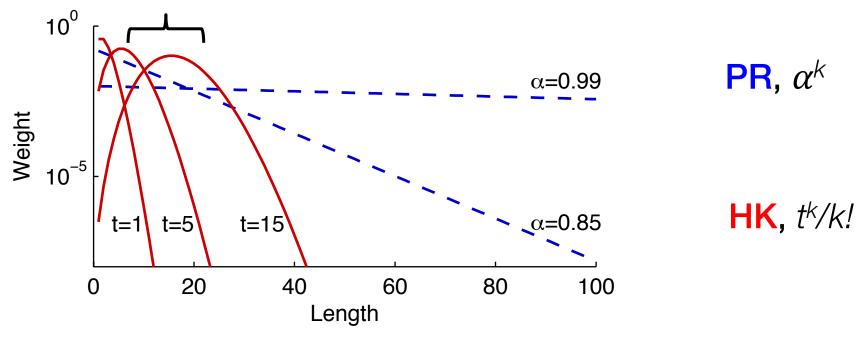
Standard, widely-used diffusion we use for comparison.





Heat Kernel vs. PageRank Behavior

HK emphasizes earlier stages of diffusion.



→ involve shorter walks from seed,
→ so HK looks at smaller sets than PR

Heat Kernel vs. PageRank Theory

good conductance fast algorithm

Local Cheeger Inequality: "PR finds set of nearoptimal conductance" "PPR-push" is $O(1/(\varepsilon(1-\alpha)))$ in theory, fast in practice [Andersen Chung Lang 06]

ΗK

PR

Heat Kernel vs. PageRank Theory

good conductance fast algorithm

PR

Local Cheeger Inequality: "PR finds set of nearoptimal conductance"

"PPR-push" is O(1/(ε(1-α))) in theory, fast in practice [Andersen Chung Lang 06]

ΗK

Local Cheeger Inequality [Chung 07]

Heat Kernel vs. PageRank Theory

good conductance fast algorithm

PR

Local Cheeger Inequality: "PR finds set of nearoptimal conductance" "PPR-push" is $O(1/(\varepsilon(1-\alpha)))$ in theory, fast in practice [Andersen Chung Lang 06]

ΗK

Local Cheeger Inequality [Chung 07]

Our work

Our work on Heat Kernel: theory

THEOREM Our algorithm for a relative ε -accuracy in a degree-weighted norm has

runtime <= O($e^t(\log(1/\varepsilon) + \log(t)) / \varepsilon$)

(which is constant, regardless of graph size)

Our work on Heat Kernel: theory

THEOREM Our algorithm for a relative ε -accuracy in a degree-weighted norm has

runtime <= O($e^t(\log(1/\varepsilon) + \log(t)) / \varepsilon$)

(which is constant, regardless of graph size)

COROLLARY HK is local!

(O(1) runtime \rightarrow diffusion vector has O(1) entries)

Our work on Heat Kernel: results

First efficient, deterministic HK algorithm. Deterministic is important to be able to compare the behaviors of HK and PR *experimentally*:

Our key findings

- HK more accurately describes ground-truth communities in real-world networks
- identifies smaller sets \rightarrow better precision
- speed & conductance comparable with PR

Twitter graph 41.6 M nodes 2.4 B edges

Python demo

un-optimized Python code on a laptop

Available for download:

https://gist.github.com/dgleich/cf170a226aa848240cf4

Algorithm Outline

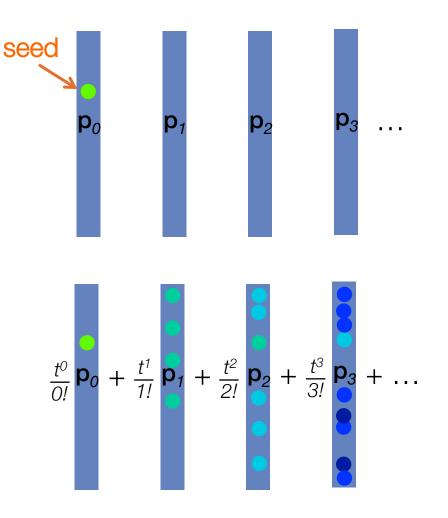
Computing HK

- 1. Pre-compute "push" thresholds
- 2. Do "push" on all entries above threshold

Algorithm Intuition

Computing HK given parameters t, ε , seed s

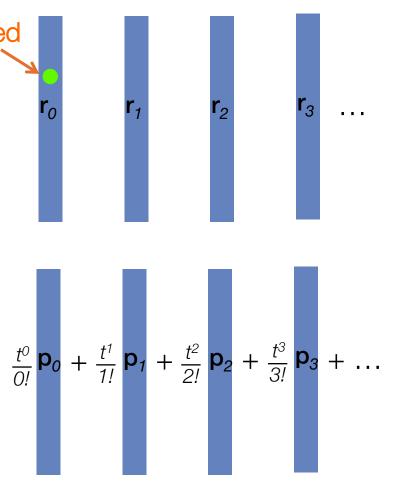
Starting from here...



Algorithm Intuition

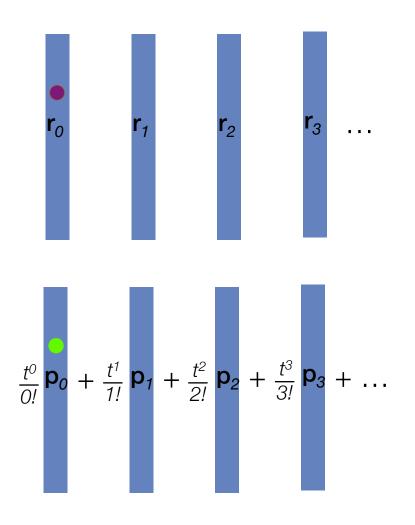
Begin with mass at seed(s) in a "residual" staging area, $\mathbf{r}_0^{\text{seed}}$

The residuals \mathbf{r}_k hold mass that is unprocessed – it's like *error*



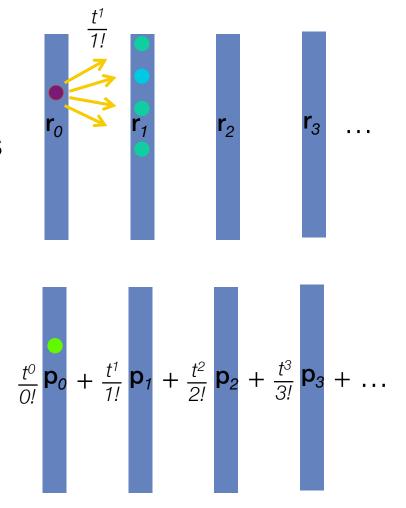
Push Operation

$\begin{array}{l} \textbf{push} - (1) \text{ remove entry in } \textbf{r}_k, \\ (2) \text{ put in } \textbf{p}, \end{array}$



Push Operation

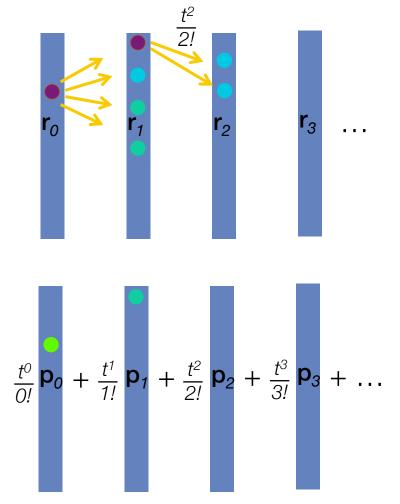
push – (1) remove entry in r_k, (2) put in p, (3) then scale and spread to neighbors in next r



Push Operation

push – (1) remove entry in r_k, (2) put in p, (3) then scale and spread to neighbors in next r

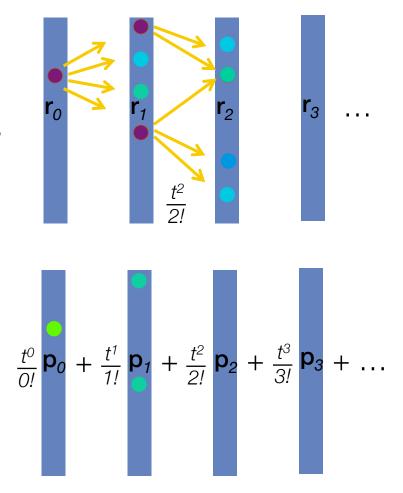
(repeat)



Push Operation

push – (1) remove entry in r_k, (2) put in p, (3) then scale and spread to neighbors in next r

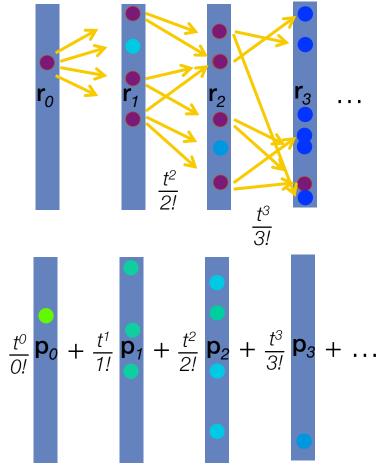
(repeat)



Push Operation

push – (1) remove entry in r_k, (2) put in p, (3) then scale and spread to neighbors in next r

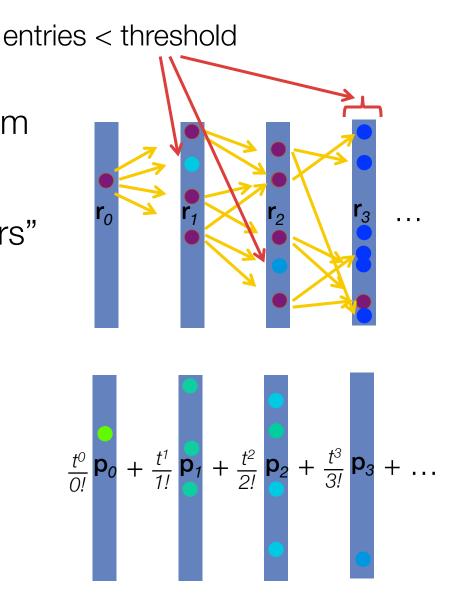
(repeat)



Thresholds

ERROR equals weighted sum of entries left in \mathbf{r}_k

→ Set threshold so "leftovers" sum to < ε



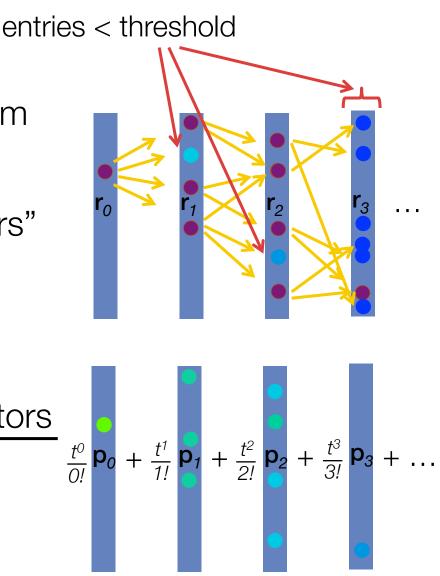
Thresholds

ERROR equals weighted sum of entries left in \mathbf{r}_k

→ Set threshold so "leftovers" sum to < ε

Threshold for stage \mathbf{r}_k is

sum of remaining scale factors prior scaling factor



Algorithm Outline

Computing HK

- 1. Pre-compute "push" thresholds
- 2. Do "push" on all entries above threshold

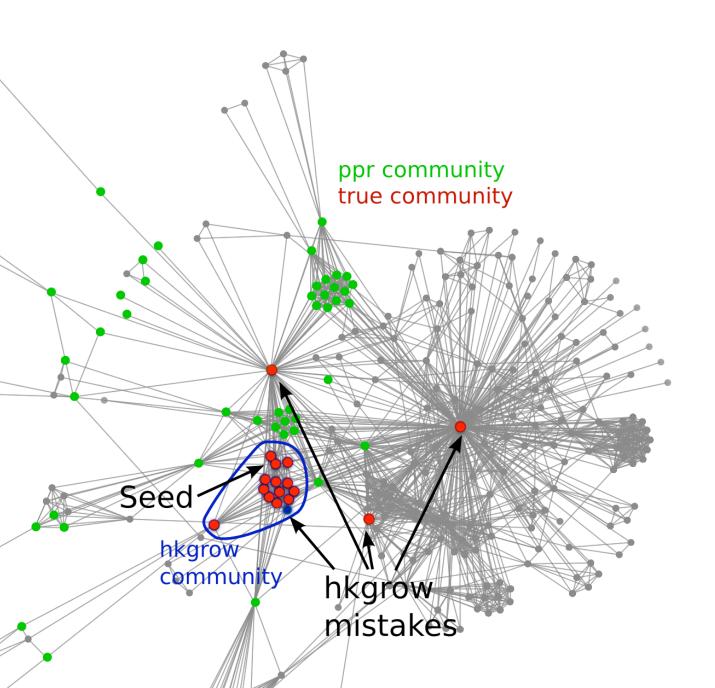
Once no more entries are > threshold: convergence!

Communities in Real-world Networks

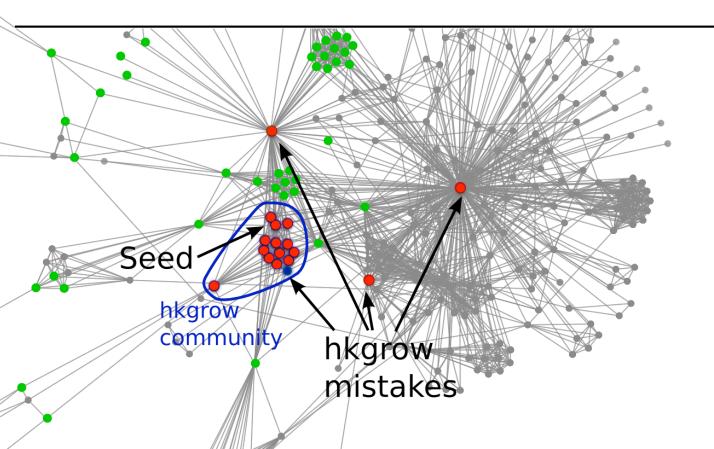
Given a seed in an unidentified real-world community, how well can HK and PR describe that community? Measure quality using F_1 -measure.

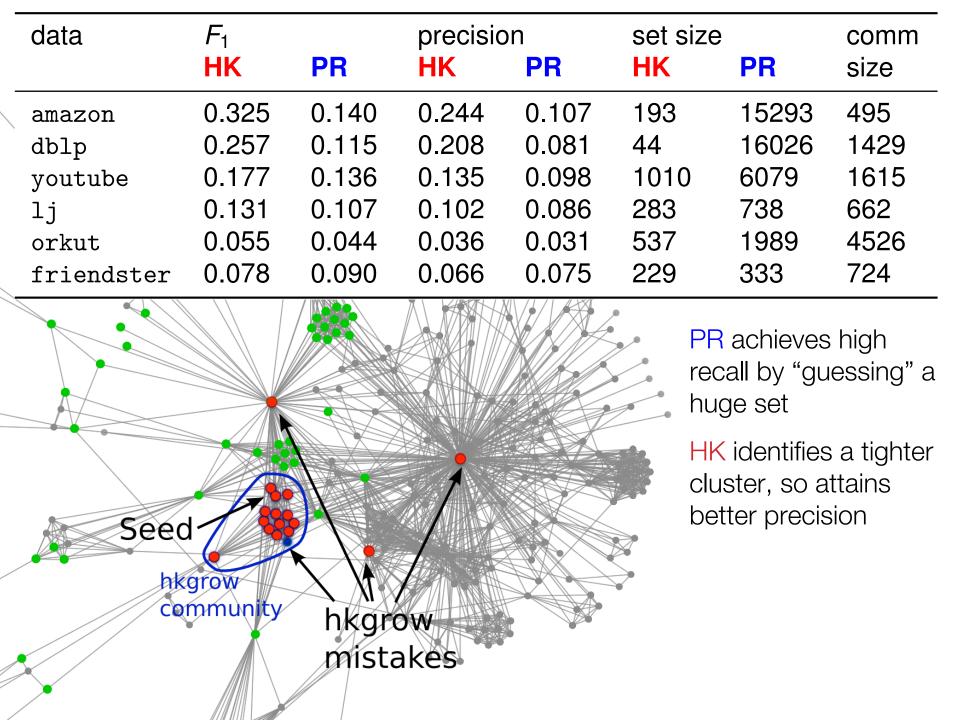
Graph	V	E	F_1 -measure		
amazon	$330 \mathrm{K}$	$930 \mathrm{K}$	' is the harmonic mean of		
dblp	$320 \mathrm{K}$	$1 \mathrm{M}$	precisión =	t guesses	
youtube	1.1 M	$3 \mathrm{M}$	# total (guesses	
lj	4 M	$35 {\rm M}$	and		
orkut	$3.1 \mathrm{M}$	$120 \mathrm{M}$	# 200000	re vou act	
friendster	66 M	1.8 B	recall =	rs you get s there are	

Datasets from SNAP collection [Leskovec]



data	F ₁		precision		set size		comm
	HK	PR	HK	PR	HK	PR	size
amazon	0.325	0.140	0.244	0.107	193	15293	495

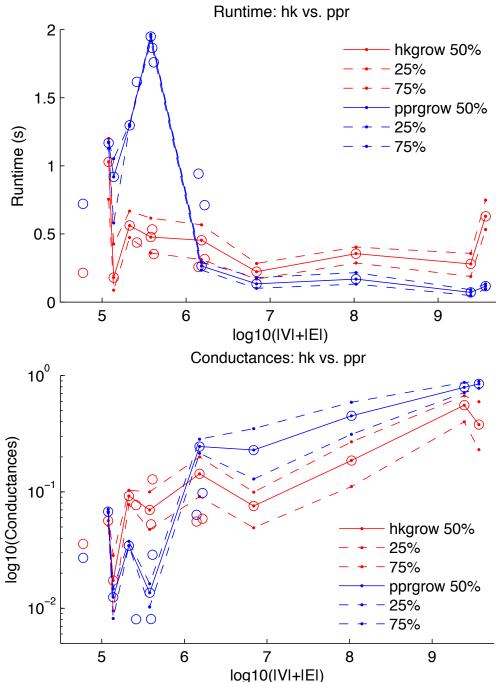




Runtime & Conductance

HK is comparable in runtime and conductance.

As graphs scale, the diffusions' performance becomes even more similar. (for the second secon



Algorithms for $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$

Constant time local community detection

Link prediction, ranking: - sublinear local method $\tilde{O}(d^2 \log^2 d)$ (on networks with power-law degree dist.)

- accuracy: $\|\mathbf{X} - \hat{\mathbf{X}}\|_1 < \varepsilon$

Algorithm 2 outline $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$

- (1) Approximate with a polynomial
- (2) Convert to linear system

(Details in paper)

(3) Solve with sparse linear solver

Algorithm 2 outline $\hat{\mathbf{x}} \approx \exp(\mathbf{P}) \mathbf{s}$

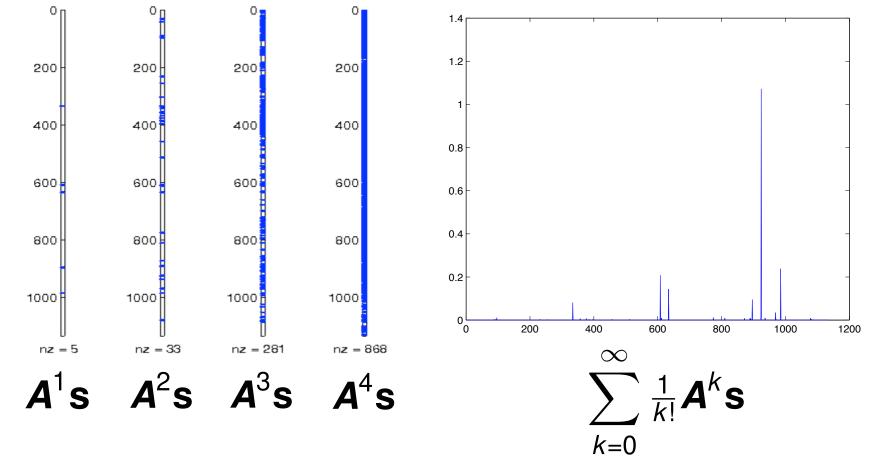
(Details in paper)

- (1) Approximate with a polynomial
- (2) Convert to linear system
- (3) Solve with sparse linear solver
 - **Key:** We avoid doing these full matrix-vector products N $\exp(\mathbf{P}) \mathbf{S} \approx \sum_{k=0}^{N} \frac{1}{k!} \mathbf{P}^{k} \mathbf{S}$

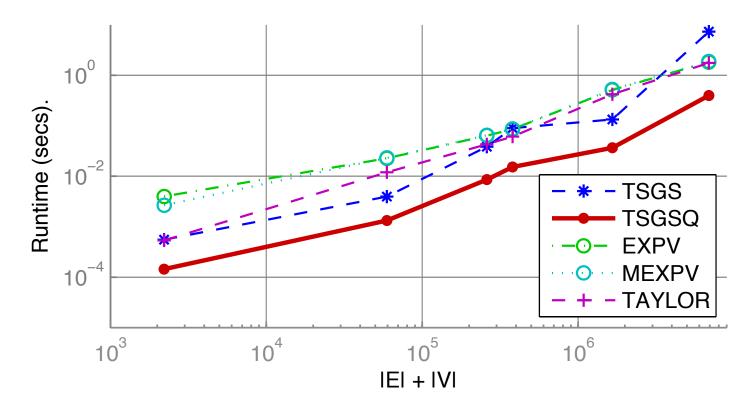
Fill-in vs. local solution

Nonzeros in the terms

Magnitude of entries in solution vector



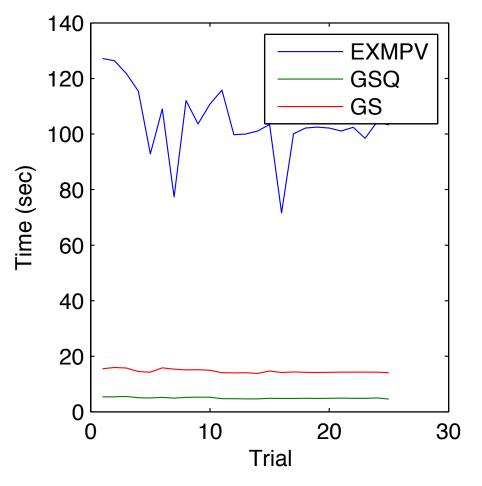
Runtime



TSGSQ is ours, EXPV is a state-of-the-art MatLab function

Runtime on the web-graph

A particularly sparse graph benefits us best

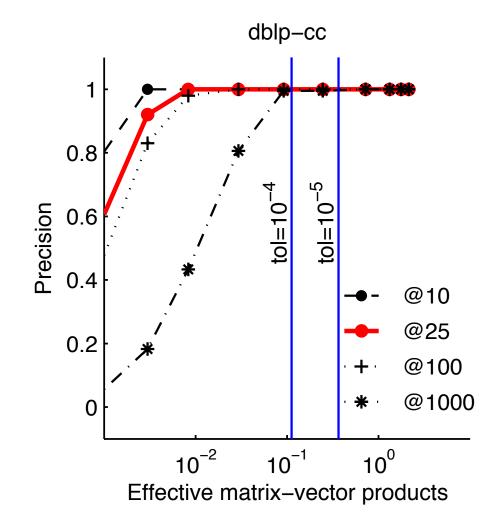


 $|V| = O(10^8)$ $|E| = O(10^9)$

GSQ is our method EXPMV is MatLab

Precision vs. work

We accurately identify large entries!



Code, references, future work

Local clustering via heat kernel code available at http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Global heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit/

Ongoing work

- generalizing to other diffusions
- simultaneously compute multiple diffusions

Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu