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Network analysis via Heat Kernel


Uses include

Local community detection

Link prediction

Node centrality


What is it?


For G, a network’s                                matrix

random-walk,

adjacency,

Laplacian,


P

A

L


a graph diffusion

a function of a matrix


exp

(

G
)

=

1X

k=0

1

k !

Gk



Heat Kernel describes node connectivity 


(Ak )ij = # walks of length k from node i to j


For a small set of seed nodes, s, 

describes nodes most relevant to s


exp

(

A
)

s

“sum up” the walks 

between i and j


exp

(

A
)ij =

1X

k=0

1

k !

(Ak
)ij



Big data, big slowdown


     diameter ~ 4

     ~ O(109) #nodes

     ~ O(1010) #edges = |E|

     constantly changing


And real-world

networks are


exp

(

A
)

s
1X

k=0

1
k ! A

k s each term takes

O(|E|) work!


=


à speed is a priority over accuracy




Local solution, big speedup

Accuracy of approximation

using only large entries


Magnitude of entries

in solution vector
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Local solution, big speedup

Accuracy of approximation

using only large entries


Magnitude of entries

in solution vector
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Only ~3,000 entries

For 10-4 accuracy!





has ~5 million nnz! 
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Local solution, local algorithm



A local algorithm approximates solution

in work proportional to output size (~3,000)

instead of whole graph (~109)



For fast heat kernel,

we want local algorithms!






Our algorithms for

ˆ

x ⇡ exp

(

P
)

s



Local community detection:


- constant time on any graph, 


- outperforms PageRank 


- accuracy:
 kD�1

x � D�1
x̂k1 < "

Õ( e1

" )



Link prediction, ranking:


- sublinear local method


(on networks with power-law degree dist.)


- accuracy:
 kx � x̂k1 < "

Õ(d2 log2 d)



Local Community Detection

Given seed(s) S in G, find a community that contains S.


seed

“Community” ?




Local Community Detection

Given seed(s) S in G, find a community that contains S.


seed

high internal, low 
external connectivity !

“Community” ?




Low-conductance sets are communities


conductance( T ) = 
 # edges leaving T




# edge endpoints in T




= “ chance a random step exits T ”






Low-conductance sets are communities


conductance( T ) = 
 # edges leaving T




# edge endpoints in T




= “ chance a random step exits T ”




How to find these ?!

conductance(comm) = 
39/381 = .102




Graph diffusions find low-conductance sets


seed

A diffusion propagates “rank” from a seed across a graph.


= high!
= low! diffusion value!



Graph diffusions find low-conductance sets


seed

A diffusion propagates “rank” from a seed across a graph.


= high!
= low! diffusion value!

= local community / !
   low-conductance set!

Okay…"
how does this work?




Graph Diffusion


p0
 p1
 p2
 p3


seed


 …


A diffusion models how a mass 
(green dye, money, popularity) 
spreads from a seed across a 
network.
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“diffuse”


A diffusion models how a mass 
(green dye, money, popularity) 
spreads from a seed across a 
network."


Once mass reaches a node, it 
propagates to the neighbors, 
with some decay.




“decay”: dye dilutes, money is taxed, popularity fades 
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Graph Diffusion




p0
 p1
 p2
 p3


seed


 …


A diffusion models how a mass 
(green dye, money, popularity) 
spreads from a seed across a 
network."


Once mass reaches a node, it 
propagates to the neighbors, 
with some decay.
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Graph Diffusion




p0
c0
 p1
c1
 p2
c2
 p3
c3


“diffusion score” of a node = "
weighted sum of the mass at that 
node during different stages.
 +
+
 +
 + …


Diffusion score




diffusion score vector = f!

f =
1X

k=0

ckP
ks

P = random-walk

transition matrix


s = normalized

seed vector


ck = weight on

stage k


Diffusion score


p0
c0
 p1
c1
 p2
c2
 p3
c3


“diffusion score” of a node = "
weighted sum of the mass at that 
node during different stages.
 +
+
 +
 + …




Heat Kernel vs. PageRank Diffusions

Heat Kernel uses tk/k! "


Our work is new analysis for this 
diffusion.


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …


p0
𝛼0
 p1
𝛼1
 p2
𝛼2
 p3
𝛼3


PageRank uses 𝛼k at stage k."


Standard, widely-used diffusion 
we use for comparison.




+
+
 +
 + …




Heat Kernel vs. PageRank Behavior
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HK emphasizes earlier stages of diffusion.


à involve shorter walks from seed,


 
à so HK looks at smaller sets than PR





HK, tk/k!


PR, 𝛼k




PR


Heat Kernel vs. PageRank Theory


HK


good

conductance


fast 

algorithm


Local Cheeger Inequality:"
“PR finds set of near-
optimal conductance”


“PPR-push” is O(1/(ε(1-𝛼)))

in theory, fast in practice


[Andersen Chung Lang 06]




PR


Heat Kernel vs. PageRank Theory


HK


good

conductance


fast 

algorithm


Local Cheeger Inequality:"
“PR finds set of near-
optimal conductance”


“PPR-push” is O(1/(ε(1-𝛼)))

in theory, fast in practice


[Andersen Chung Lang 06]


Local Cheeger Inequality 
[Chung 07]




PR


Heat Kernel vs. PageRank Theory


HK


good

conductance


fast 

algorithm


Local Cheeger Inequality:"
“PR finds set of near-
optimal conductance”


“PPR-push” is O(1/(ε(1-𝛼)))

in theory, fast in practice


[Andersen Chung Lang 06]


Local Cheeger Inequality 
[Chung 07]
 Our work!



Our work on Heat Kernel: theory

THEOREM Our algorithm for a relative"
     ε-accuracy in a degree-weighted norm has 



runtime <= O( et(log(1/ε) + log(t)) / ε)

     (which is constant, regardless of graph size)




Our work on Heat Kernel: theory

THEOREM Our algorithm for a relative"
     ε-accuracy in a degree-weighted norm has 



runtime <= O( et(log(1/ε) + log(t)) / ε)

     (which is constant, regardless of graph size)




COROLLARY HK is local!

(O(1) runtime à diffusion vector has O(1) entries)!








Our work on Heat Kernel: results

First efficient, deterministic HK algorithm. Deterministic 
is important to be able to compare the behaviors of 
HK and PR experimentally:

Our key findings!
•  HK more accurately describes ground-truth 

communities in real-world networks!
•  identifies smaller sets à better precision

•  speed & conductance comparable with PR








Python"
demo


Twitter graph

41.6 M nodes

2.4 B edges



un-optimized Python code

on a laptop


Available for download:




https://gist.github.com/dgleich/cf170a226aa848240cf4



Algorithm Outline

Computing HK!

1. Pre-compute “push” thresholds


2. Do “push” on all entries above threshold




Algorithm Intuition

Computing HK given parameters t, ε, seed s!

Starting from here…











How to end up here?


p0
 p1
 p2
 p3


seed


 …


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …




Algorithm Intuition


Begin with mass at seed(s)

in a “residual” staging area, r0



The residuals rk hold mass that 
is unprocessed – it’s like error


r0
 r1
 r2
 r3


seed


 …


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …




Push Operation


push – (1) remove entry in rk,"
            (2) put in p,


r0
 r1
 r2
 r3
  …


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …




push – (1) remove entry in rk,"
            (2) put in p,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r!




r0
 r1
 r2
 r3
  …


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …


t1

1!


Push Operation




Push Operation


r0
 r1
 r2
 r3
  …


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …


t2

2!


push – (1) remove entry in rk,"
            (2) put in p,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r


(repeat)




Push Operation


r0
 r1
 r2
 r3
  …


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …


t2

2!


push – (1) remove entry in rk,"
            (2) put in p,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r


(repeat)




Push Operation
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push – (1) remove entry in rk,"
            (2) put in p,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r


(repeat)




Thresholds


ERROR equals weighted sum

of entries left in rk



à  Set threshold so “leftovers” 

sum to <  ε


r0
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p0
t0
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t3
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entries < threshold 




Thresholds


ERROR equals weighted sum

of entries left in rk



à  Set threshold so “leftovers” 

sum to <  ε


r0
 r1
 r2
 r3
  …


p0
t0

0!


p1
 p2
 p3
+
+
 +
t1

1!


t2

2!


t3

3!
 + …


entries < threshold 


Threshold for stage rk is"


 sum of remaining scale factors"
        prior scaling factor




Algorithm Outline

Computing HK!

1. Pre-compute “push” thresholds


2. Do “push” on all entries above threshold


Once no more entries are > threshold: convergence!




Communities in Real-world Networks

Given a seed in an unidentified real-world community,

how well can HK and PR describe that community?



Measure quality using F1-measure.


F1-measure


is the harmonic mean of "




precision
 =
 # correct guesses

# total guesses


recall
 =
 # answers you get

# answers there are


and


Graph |V | |E|
amazon 330 K 930 K
dblp 320 K 1 M
youtube 1.1 M 3 M
lj 4 M 35 M
orkut 3.1 M 120 M
friendster 66 M 1.8 B

Datasets from SNAP collection [Leskovec]






data F
1

precision set size comm

HK PR HK PR HK PR size

amazon 0.325 0.140 0.244 0.107 193 15293 495

dblp 0.257 0.115 0.208 0.081 44 16026 1429

youtube 0.177 0.136 0.135 0.098 1010 6079 1615

lj 0.131 0.107 0.102 0.086 283 738 662

orkut 0.055 0.044 0.036 0.031 537 1989 4526

friendster 0.078 0.090 0.066 0.075 229 333 724



data F
1

precision set size comm

HK PR HK PR HK PR size

amazon 0.325 0.140 0.244 0.107 193 15293 495

dblp 0.257 0.115 0.208 0.081 44 16026 1429

youtube 0.177 0.136 0.135 0.098 1010 6079 1615

lj 0.131 0.107 0.102 0.086 283 738 662

orkut 0.055 0.044 0.036 0.031 537 1989 4526

friendster 0.078 0.090 0.066 0.075 229 333 724

PR achieves high 
recall by “guessing” a 
huge set

HK identifies a tighter 
cluster, so attains 
better precision




Runtime &"
Conductance"
"
 HK is comparable in 
runtime and conductance."
"
"
As graphs scale,"
the diffusions’ performance 
becomes even more similar.
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Algorithms for
 ˆ

x ⇡ exp

(

P
)

s



Constant time local community detection



Link prediction, ranking:


- sublinear local method


(on networks with power-law degree dist.)


- accuracy:
 kx � x̂k1 < "

Õ(d2 log2 d)



Algorithm 2 outline


(1) Approximate with a polynomial

(2) Convert to linear system

(3) Solve with sparse linear solver







 
(Details in paper)
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Algorithm 2 outline


(1) Approximate with a polynomial

(2) Convert to linear system

(3) Solve with sparse linear solver







 
(Details in paper)


We avoid doing these

full matrix-vector

products


Key:


ˆ

x ⇡ exp

(

P
)

s

exp

(

P
)

s ⇡
NX

k=0

1

k !

Pk s



Fill-in vs. local solution
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Nonzeros in the terms 
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Runtime
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TSGS
TSGSQ
EXPV
MEXPV
TAYLOR

TSGSQ is ours, EXPV is a state-of-the-art

MatLab function




Runtime on the web-graph


|V| = O(10^8)

|E| = O(10^9)
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EXMPV
GSQ
GS

GSQ is our method

EXPMV is MatLab


A particularly sparse graph  benefits us best




Precision vs. work

We accurately identify large entries!
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Code, references, future work

Local clustering via heat kernel code available at


http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow



Global heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit/

!

Ongoing work!
-  generalizing to other diffusions

-  simultaneously compute multiple diffusions





Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu


