Local community structure
In social & information
networks

Joint with
~=¥ David F. Gleich, Kyle Kloster

AL (Purdus) supported by Purdue University

1140756-ccF - PURDUE

Network analysis via Heat Kernel

_ocal community detection
Uses include 4 | ink prediction
Node centrality

What Is it”?
a graph diffusion exp (G) = i l, Gk

a function of a matrix

random-walk, P
For G, a network’s | adjacency, A | matrix

Laplacian, L

Heat Kernel describes node connectivity

(AF) i = # walks of length k from node / to

“sum up” the walks

> between / and
exp (A); = > H(AY);

For a small set of seed nodes, s, exp (A) s
describes nodes most relevant to s

Big data, big slowdown

each term takes

exp(A)s = » LA"s
k=0

O(|E|) work!
diameter ~ 4
And real-world ~ O(109°) #nodes
networks are ~ O(1019) #edges = |E|
constantly changing

—> speed is a priority over accuracy

Local solution, big speedup

Magnitude of entries Accuracy of approximation
in solution vector using only large entries

1.57

0

10

—
T

magnitude

o
(@)
1—-norm error

O &en .0 . o 8 & 20 . o 2 2.0 .m0 o o ol PPy
1 2 3 4 5 10

nnz = 4815948 x 10° 10~

o I I N
k - 10° 10" 10° 10° 10* 10° 10°
> 4 A"s has ~5 million nnz!

_ largest non—-zeros retained
k=0

Local solution, big speedup

Magnitude of entries Accuracy of approximation
in solution vector using only large entries

1.57 .
10
107
g | 5 107
-0l Only ~3,000 entries
oLt For 10-* accuracy!
nnz = 4
xTo] 2

S~ ' : L L i i
k A 100 101 102 103 104 105 106
E 1 A“s has ~5 milion nnz!

largest non-zeros retained
k=0

Local solution, local algorithm

A local algorithm approximates solution

iNn work proportional to output size (~3,000)
instead of whole graph (~109)

For fast heat kernel,
we want local algorithms!

Our algorithms for 5 ~ exp (P)s

Local community detection: L
- constant time on any graph, O(£-)
- outperforms PageRank

-accuracy: ||D7'x — D7 'R||o < €

Link prediction, ranking: _)
- sublinear local method O(d” log” d)
(on networks with power-law degree dist.)

-accuracy: ||x — X||1 < e

Local Community Detection
Given seed(s) S in G, find a community that contains S.

seed

“Community” ?

Local Community Detection
Given seed(s) S in G, find a community that contains S.

seed

“Community” ?

high internal, low

Low-conductance sets are communities

edges leaving T

conductance(7)) = —
edge endpoints in T

= “ chance a random step exits T ”

Low-conductance sets are communities

edges leaving T
conductance(7)) = 9 J

edge endpoints in T

= “ chance a random step exits T ”

“~conductance() =
'*’ 39/381 = .102

How to find these ?

Graph diffusions find low-conductance sets
A diffusion propagates “rank” from a seed across a graph.

seed
N7/ % @ = high
Nl; ‘ ® /) - Ig . .
i (1N ////' 1% diffusion value
@ =low

/)Ilﬂli

I
l
|

Graph diffusions find low-conductance sets
A diffusion propagates “rank” from a seed across a graph.

seed

@ - high

® - low :I-diffusion value

Okay...
how does this work"?

Graph Diffusion

A diffusion models how a mass ...
(green dye, money, popularity)
spreads from a seed across a
network.

Graph Diffusion

A diffusion models how a mass ...

(green dye, money, popularity)
spreads from a seed across a
network.

“diffuse”

l_l_\

Graph Diffusion

dlffuse

A diffusion models how a mass ...
(green dye, money, popularity)
spreads from a seed across a
network.

Once mass reaches a node, it

propagates to the neighbors,
with some decay.

“decay”: dye dilutes, money is taxed, popularity fades

Graph Diffusion

A diffusion models how a mass ...
(green dye, money, popularity)
spreads from a seed across a
network.

Once mass reaches a node, it

propagates to the neighbors, dn‘fuse
with some decay.

“decay”: dye dilutes, money is taxed, popularity fades

Graph Diffusion

A diffusion models how a mass ...
(green dye, money, popularity)
spreads from a seed across a
network.

Once mass reaches a node, it

propagates to the neighbors,
with some decay.

“decay”: dye dilutes, money is taxed, popularity fades

Diffusion score

“diffusion score” of a node =
weighted sum of the mass at that
node during different stages. Co

Diffusion score
“diffusion score” of a node =
weighted sum of the mass at that
node during different stages. + Cy

diffusion score vector =
random-walk

OO — transition matrix
k _normalized
f = E CkP S S seed vector
l—0 CL = weight on

stage k

Heat Kernel vs. PageRank Diffusions

Heat Kernel uses t“/k!

' - - Cpg+ Lo+ Lpd+ L Pg+
Our work is new analysis for this o 7l 2] 3l
diffusion.

PageRank uses a* at stage k.
Standard, widely-used diffusion “F+ «Bi+ P+ <+ -
we use for comparison.

Heat Kernel vs. PageRank Behavior

HK emphasizes earlier stages of diffusion.

PR, o

HK, t</k!

Length

- involve shorter walks from seed,
- so HK looks at smaller sets than PR

Heat Kernel vs. PageRank Theory

good fast
conductance algorithm
Local Cheeger Inequality: “PPR-push” is O(1/(e(1-a)))
PR “PR finds set of near- in theory, fast in practice
optimal conductance” [Andersen Chung Lang 06]

HK

Heat Kernel vs. PageRank Theory

good fast
conductance algorithm

PR

HK Local Cheeger Inequality
[Chung 07]

Heat Kernel vs. PageRank Theory

good fast
conductance algorithm

PR

HK Our work

Our work on Heat Kernel: theory

THEOREM Our algorithm for a relative
g-accuracy in a degree-weighted norm has

runtime <= O(e'(log(71/€) + log(t)) / €)
(which is constant, regardless of graph size)

Our work on Heat Kernel: theory

THEOREM Our algorithm for a relative
g-accuracy in a degree-weighted norm has

runtime <= O(e'(log(71/€) + log(t)) / €)
(which is constant, regardless of graph size)

COROLLARY HK is local

(O(1) runtime - diffusion vector has O(1) entries)

Our work on Heat Kernel: results

First efficient, deterministic HK algorithm. Deterministic
IS Important to be able to compare the behaviors of
HK and PR experimentally:

Our key findings

- HK more accurately describes ground-truth
communities In real-world networks

« [dentifies smaller sets = better precision
e speed & conductance comparable with PR

Twitter graph

41.6 M nodes
2.4 B edges
Python un-optimized Python code
demo on a laptop

Available for download:

https://gist.github.com/dgleich/cf170a226aa848240cf4

Algorithm Outline
Computing HK

1. Pre-compute “push” thresholds

2. Do “push” on all entries above threshold

Algorithm Intuition
Computing HK given parameters t, €, seed s

Starting from here... Seed\i | | |
How to end up here?

to t! t2 18

il -+ 77 + 5 + 37 + ...

Algorithm Intuition

Begin with mass at seed(s)
in a “residual” staging area, r°°°

The residuals r, hold mass that
IS unprocessed — it’s like error

Push Operation

push — (1) remove entry in r,,
(2) putin p,

Qls

s S e
|
|~..

- S
|
|

N
I
| =

-
+)

Push Operation

push — (1) remove entry in r,, o
(2) putin p,
(3) then scale and
spread to neighbors
INn next r

Qs
|

Push Operation

push — (1) remove entry in r,, L
(2) putin p,
(3) then scale and
spread to neighbors
INn next r
(repeat)

Qs
I
|
|
|

1! 2!

t2|

Push Operation

push — (1) remove entry in r,,
(2) putin p,
(3) then scale and
spread to neighbors
INn next r
(repeat) 2]

Ql=
_I.
| =
|
| =
e e e
+
W
e
+)

Push Operation

push — (1) remove entry in r,,
(2) putin p,
(3) then scale and
spread to neighbors
INn next r
(repeat)

Thresholds

entries < threshold

ERROR equals weighted sum
of entries left in r,

- Set threshold so “leftovers”
sunmto< ¢

Thresholds

entries < threshold

ERROR equals weighted sum
of entries left in r,

- Set threshold so “leftovers”
sunmto< ¢

Threshold for stage r, is

prior scaling factor

Qs
I

#2
2!

sum of remaining scale factors |

Algorithm Outline
Computing HK

1. Pre-compute “push” thresholds
2. Do “push” on all entries above threshold

Once no more entries are > threshold: convergence!

Communities in Real-world Networks

Given a seed in an unidentified real-world community,
how well can HK and PR describe that community?
Measure quality using F,-measure.

Graph ’V‘ ‘E‘ F,-measure

amazon 330 K 930 K is the harmonic mean of
dblp 320 K 1 M precision = # correct guesses
youtube 1.1 M 3 M # total guesses
1] 4 M 35 M and

orkut 3.1 M 120 M

answers you get
answers there are

friendster 66 M 1.8 B recall =

Datasets fromm SNAP collection [Leskovec]

ppr community
| true community
S\ A
/»4' ‘I N/
N\ ’

data F precision set size comm
HK PR HK PR HK PR size

. amazon 0325 0.140 0.244 0.107 193 15293 495

data F precision set size comm
HK PR HK PR HK PR size

. amazon 0325 0.140 0.244 0.107 193 15293 495
dblp 0.257 0.115 0.208 0.081 44 16026 1429
youtube 0177 0136 0.135 0.098 1010 6079 1615
1] 0.131 0.107 0.102 0.086 283 /38 662

0.044 0.036 0.031 537 1989 4526
0.066 : 229 333 724

PR achieves high
recall by “guessing” a
huge set

HK identifies a tighter
cluster, so attains
better precision

Runtime &
Conductance

Runtime (s)

HK is comparable in

runtime and conductance. °°]
0
As graphs scale, o -
the diffusions’ performance
becomes even more similar.
g 10
i 10

1.5r

Runtime: hk vs. ppr

——— hkgrow 50%
— = —25%
— = —75%
——— pprgrow 50%
— -~ —25%
— = —75%

2

O
o
5 6 7 8 9
log10(IVI+IEI)
Conductances: hk vs. ppr
——— hkgrow 50%
O — - —25%
o — - —75%
—— pprgrow 50%
— - —25%
OO — - —75%
5 6 7 8 9

log10(IVI+IEI)

Algorithms for x ~ exp (P) s

Constant time local community detection /

Link prediction, ranking: _)
_ sublinear local method O(d? log” d)
(on networks with power-law degree dist.)

-accuracy: || X — X||1 < e

Algorithm 2 outline X ~exp(P)s

(1) Approximate with a polynomial
(2) Gonvert to linear system (Details in papen)

(3) Solve with sparse linear solver

Algorithm 2 outline X~ exp(P)s

(1) Approximate with a polynomial
(2) Gonvert to linear system (Details in papen)

(3) Solve with sparse linear solver

Key: We avoid doing these
full matrix-vector
products N

:

exp(P)s~ Y 1P's
k=0

Fill-in vs. local solution

Magnitude of entries

Nonzeros in the terms in solution vector

0 og 0 0 »
a
12
200 ooo 200 200
I 1+
400 4008 400 400
I 0.8
600 600K 600 600 osl
800 800k 800 800 041
! 0.2}
1000 1000f 1000 1000 ‘
0 L ' " J " l L
0 200 600 800 1000 1200

Runtime

*
0 "l;w@

R
.,/*Q’/
=1 ¥
I ,W

_=="" —e— TSGSQ
¥ —~0— EXPV
107" — O MEXPV |-
— + -TAYLOR
10° 10* 10° 10°
IE| + VI

TSGSQ is ours, EXPV is a state-of-the-art
MatlLab function

Runtime on the web-graph

A particularly sparse graph benefits us best
0 | — EXMPV
120} ——GsQ | V| = O(1018)
100 —— |E| — 0(1 OAQ)

E 80

= % | GSQis our method
40 1 —XPMV is MatlLab
201

O0 110 210 30

Trial

Precision vs. work
We accurately identify large entries!

dblp—cc

(e

s

K2

O

©

o @10
@25
@100

. @1000

10° 100 10°
Effective matrix—vector products

Code, references, future work

Local clustering via heat kernel code available at
http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Global heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit/

Ongoing work
- generalizing to other diffusions

- simultaneously compute multiple diffusions

Questions or suggestions? Email Kyle Kloster at xkloste-at-purdue-dot-edu

