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Local Clustering

Given seed(s) S in G, find a good cluster near S


seed



Local Clustering

Given seed(s) S in G, find a good cluster near S


seed

 “Near”?  -> 

      local, small

      containing S


“Good”? ->

     low conductance




Low-conductance sets are clusters


conductance( T ) = 
 # edges leaving T




# edge endpoints in T




= “ chance a random edge"
  that touches T exits T ”





(for small sets T,

i.e. vol(T) < vol(G)/2)
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For a global cluster,

could use Fiedler…

But we want

a local cluster




Fiedler


Lv = �2Dv
“Sweep” over v:  


3. output best Sk


2. for each set Sk = (1,…,k)

    compute conductance


�(Sk )

1. sort:


 v (1) � v (2) � · · ·

Compute Fiedler vector, v:  




Fiedler



Cheeger Inequality:"
Fiedler finds a cluster “not 
too much worse” than"
global optimal



But we want local…


Lv = �2Dv
“Sweep” over v:  


3. output best Sk


2. for each set Sk = (1,…,k)

    compute conductance


�(Sk )

1. sort:


 v (1) � v (2) � · · ·

Compute Fiedler vector, v:  




Local Fiedler and diffusions


with local bias

Fiedler
Lv = Dv[�]

Lv = Dv[�] + “s”

[Mahoney Orecchia Vishnoi 12]

“A local spectral method…”


THM: MOV is a scaling of personalized PageRank*!


(MOV)

(normalized seed vector s)




Local Fiedler and diffusions


PageRank vector,!
a diffusion


Fiedler

with local bias


Intuition: why MOV ~ PageRank

Lv = Dv[�]

AD�1v̂ = v̂[1 � �] + “s”

Lv = Dv[�] + “s”

(I � D�1/2AD�1/2)v̂ = v̂[�] + “s”

(I � ↵P) v̂ = “s”



PageRank and other diffusions

“Personalized” PageRank (PPR) 

[Andersen, Chung, Lang 06]: local Cheeger inequality"
and fast algorithm, “Push” procedure




x =
X

k=0

↵k Pk
ŝ(I � ↵P) x = ŝ

Diffusion perspective
Standard setting




PageRank and other diffusions

“Personalized” PageRank (PPR) 

[Andersen, Chung, Lang 06]: local Cheeger inequality"
and fast algorithm, “Push” procedure




Heat Kernel diffusion (HK)"
(many more!)


x =
X

k=0

↵k Pk
ŝ

f =
X

k=0
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Various diffusions 
explore different 
aspects of graphs.
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Diffusions, theory & practice


HK


good

conductance


fast 

algorithm


Gen!
Diff


Local Cheeger Inequality
 [Andersen Chung Lang 06]

“PPR-push” is O(1/(ε(1-𝛼)))


Local Cheeger Inequality 
[Chung 07]


[K., Gleich 2014]

“HK-push” is O(etC/ε )


Open question

[Avron, Horesh 2015]


Open question
 This talk


TDPR
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Local Cheeger Inequality
 [Andersen Chung Lang 06]

“PPR-push” is O(1/(ε(1-𝛼)))


Local Cheeger Inequality 
[Chung 07]


[K., Gleich 2014]

“HK-push” is O(etC/ε )


Open question

[Avron, Horesh 2015]


Open question
 This talk


TDPR


David Gleich and I are working with Olivia Simpson

(a student of Fan Chung’s)




General diffusions: intuition


seed

A diffusion propagates “rank” from a seed across a graph.


= high!
= low! diffusion value!

= local cluster / !
   low-conductance set!



General diffusions

A diffusion propagates “rank” from a seed across a graph.


f =
X

k=0

ck Pk ŝ
General diffusion vector


p0
c0
 p1
c1
 p2
c2
 p3
c3
+
+
 +
 + …
f =


Sweep over f!




General algorithm


1.  Approximate f so

2.  Scale, 

3.  Then sweep!


How to do this efficiently? 


kD�1(f � f̂)k1  ✏

D�1 f̂



Algorithm Intuition

From parameters ck, ε, seed s …!

Starting from here…











How to end up here?


p0
 p1
 p2
 p3


seed


 …


p0
c0
 p1
c1
 p2
c2
 p3
c3
+
+
 +
 + …




Algorithm Intuition


Begin with mass at seed(s)

in a “residual” staging area, r0



The residuals rk hold mass that 
is unprocessed – it’s like error





Idea: “push” any entry

rk(j)/ dj > (some threshold) 


r0
 r1
 r2
 r3


seed


 …


p0
 p1
 p2
 p3
+
+
 +
 + …
c0
 c1
 c2
 c3




Push Operation


push – (1) remove entry in rk,"
            (2) put in f,


r0
 r1
 r2
 r3
  …


p0
 p1
 p2
 p3
+
+
 +
 + …
c0
 c1
 c2
 c3




push – (1) remove entry in rk,"
            (2) put in f,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r!




r0
 r1
 r2
 r3
  …


p0
 p1
 p2
 p3
+
+
 +
 + …


c1


Push Operation


c0
 c1
 c2
 c3




Push Operation


r0
 r1
 r2
 r3
  …


p0
 p1
 p2
 p3
+
+
 +
 + …


push – (1) remove entry in rk,"
            (2) put in f,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r


(repeat)


c0
 c1
 c2
 c3


c2




Push Operation


r0
 r1
 r2
 r3
  …


p0
 p1
 p2
 p3
+
+
 +
 + …


c2


push – (1) remove entry in rk,"
            (2) put in f,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r


(repeat)


c0
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 c3




Push Operation


r0
 r1
 r2
 r3
  …


p0
 p1
 p2
 p3
+
+
 +
 + …


push – (1) remove entry in rk,"
            (2) put in f,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r


(repeat)


c0
 c1
 c2
 c3


c2

c3




Thresholds


ERROR equals weighted sum

of entries left in rk



à  Set threshold so “leftovers” 

sum to <  ε


r0
 r1
 r2
 r3
  …


p0
 p1
 p2
 p3
+
+
 +
 + …


entries < threshold 


c0
 c1
 c2
 c3




Thresholds


ERROR equals weighted sum

of entries left in rk



à  Set threshold so “leftovers” 

sum to <  ε


r0
 r1
 r2
 r3
  …


p0
 p1
 p2
 p3
+
+
 +
 + …


entries < threshold 


Threshold for stage rk is"



c0
 c1
 c2
 c3


Then 
kD�1(f � f̂)k1  ✏

✏/

0

@
1X

j=k+1

cj

1

A



Another perspective


PageRank vector,!
a diffusion


Fiedler

with local bias


Lv = Dv[�]

AD�1v̂ = v̂[1 � �] + “s”

Lv = Dv[�] + “s”

(I � D�1/2AD�1/2)v̂ = v̂[�] + “s”

(I � ↵P) v̂ = “s”



Another perspective


AD�1V̂k = V̂k (I � ⇤k ) + Ŝ

LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler

with local bias


(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ



Another perspective


PV̂k� = V̂k + S̄

LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler

with local bias


AD�1V̂k = V̂k (I � ⇤k ) + Ŝ

(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ

Mix-product property"
For Kronecker product




Another perspective


PV̂k� = V̂k + S̄ Mix-product property"
For Kronecker product


LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler

with local bias


AD�1V̂k = V̂k (I � ⇤k ) + Ŝ

(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ

(I � �T ⌦ P)vec(V̂k ) = vec(S̃)



Another perspective


(I � ↵P) v̂ = s̃

(I � �T ⌦ P)vec(V̂k ) = vec(S̃)

- generalizes PageRank to

   “matrix teleportation parameter”


� = (I � ⇤k )�1Standard spectral approach:




Another perspective


(I � ↵P) v̂ = s̃

(I � �T ⌦ P)vec(V̂k ) = vec(S̃)

- generalizes PageRank to

   “matrix teleportation parameter”


� =

2

66664

0 c̃0

0
. . .
. . . c̃N

0

3

77775

Our framework

is equivalent to:


(Details in [K., Gleich  KDD 14])




General diffusions: conclusion

THM: For diffusion coefficients ck >= 0 satisfying 







“generalized push” approximates the diffusion f



on a symmetric graph so that 



in work bounded by



Constant for any inputs!

(If diffusion decays fast)


1X

k=0

ck = 1 and


kD�1(f � f̂)k1  ✏

O(2N2/✏)

NX

k=0

ck  ✏/2 “rate of 
decay”




Proof sketch


1. Stop pushing after N terms. 

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 


3. Total work is # pushes:


rk (j) � d(j)✏/(2N)
N�1X

k=0

mkX

t=1

d(jt )



Push Recap


r0
 r1
 r2
 r3
  …


p0
 p1
 p2
 p3
+
+
 +
 + …


push – (1) remove entry in rk,"
            (2) put in p,

            (3) then scale and



 
 
 spread to neighbors


 
 
 in next r


c0
 c1
 c2
 c3


c2

c3


d(j) work




Proof sketch


1. Stop pushing after N terms. 

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 


3. Total work is # pushes:


rk (j) � d(j)✏/(2N)
N�1X

k=0

mkX

t=1

d(jt )



Proof sketch


1. Stop pushing after N terms. 

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 


3. Total work is # pushes:


rk (j) � d(j)✏/(2N)


N�1X

k=0

mkX

t=1

rk (jt )(2N)/✏
N�1X

k=0

mkX

t=1

d(jt )



Proof sketch


1. Stop pushing after N terms. 


O(2N2/✏)

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 


4. Each rk sums to <= 1

(each push is added to f, which sums to 1)


3. Total work is # pushes:


rk (j) � d(j)✏/(2N)


N�1X

k=0

mkX

t=1

rk (jt )(2N)/✏
N�1X

k=0

mkX

t=1

d(jt )

mkX

t=1

rk (jt )  1



Solutions Paths

Benefit of these “push” diffusions?



A direct decomposition is a black box:

Feed in input, get output.



In contrast, the iterative nature of “push” means

running the algorithm is essentially “watching” the 
diffusion process occur.
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Solutions Paths
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a node. Its value 
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as ε goes to 0.





Thick black line

shows set of best

conductance.
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Solutions Paths
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✏ = 10�3 ✏ = 10�4

Bundles of curves

are good clusters



Paths identify 

nested clusters


✏ = 10�2

Each curve is 

a node. Its value 

increases

as ε goes to 0.





Thick black line

shows set of best

conductance.




Solutions Paths


Locate nested, good-conductance sets

that a single diffusion + sweep could miss.



Can be done efficiently because the constant-
time approach to computing diffusions enables

efficient storage and analysis of the push process


Total Paths work (for PageRank):

Still efficient!


O
✓

1
✏(1 � ↵)

◆2



Thank you

Heat kernel code available at


http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Solution paths:   http://arxiv.org/abs/1503.00322
(Solution paths, generalized diffusion code soon)


Ongoing work!
-  Generalized local Cheeger Inequality"

for broader class of diffusions




Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu


