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Local Clustering
Given seed(s) S in G, find a good cluster near S
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Given seed(s) S in G, find a good cluster near S

seed

“Near”? ->
local, small
containing S

Z . i ' “Good”? ->
A/ ] // g N low conductance




Low-conductance sets are clusters

# edges leaving T

conductance( 7)) = —
# edge endpoints in T

(for small sets T,
.e. vol(T) < vol(G)/2)

= “ chance a random edge
that touches T exits T~




Low-conductance sets are clusters

# edges leaving T

conductance( T ) = —
# edge endpoints in T

(for small sets T,
.e. vol(T) < vol(G)/2)

For a global cluster,
could use Fiedler...
But we want

a local cluster




Fiedler

Compute Fiedler vector, v:
Lv = \oDv
“Sweep” over V:

1. sort:
v(1) > v(2) > -

2. foreachset S, =(1,..., K)
compute conductance

d(Sk)

3. output best S,




Fiedler

Compute Fiedler vector, v:

Lv = \oDv
“Sweep” over V:

1. sort:
v(1) > v(2) > -

2. foreachset S, =(1,..., K)
compute conductance

d(Sk)

3. output best S,

Cheeger Inequality:
Fiedler finds a cluster “not
too much worse” than
global optimal

But we want local...




Local Fiedler and diffusions

[Mahoney Orecchia Vishnoi 12]

“A local spectral method...”

Lv = Dv
Lv = Dv

A
A

Fiedler

+ “s” with local bias

(normalized seed vector s)

(MOV)

THM: MOV is a scaling of personalized PageRank™!




Local Fiedler and diffusions
Intuition: why MOV ~ PageRank

Lv = Dv[)\ Fiedler
Lv = Dv[)\] + “s” with local bias

(I — D712AD~1/2)¢ = {[\] + “s”
AD U =V[1 — \] +“8”

. ~ un» PageRank vector,
(I=aP)V="s a diffusion




PageRank and other diffusions

“Personalized” PageRank (PPR)

[Andersen, Chung, Lang 06]: local Cheeger inequality
and fast algorithm, “Push” procedure

Standard setting Diffusion perspective

(I-aP)x=8 — x=) oP's
k=0




PageRank and other diffusions

- kpkg
“Personalized” PageRank (PPR) X %O‘ S

[Andersen, Chung, Lang 06]: local Cheeger inequality
and fast algorithm, “Push” procedure

Heat Kernel diffusion (HK) f=) CP§
(many more!) k=0

Various diffusions
explore different
T~ < a-08s aspects of graphs.

~

80 100




Diffusions, theory & practice

PR

HK

TDPR

Gen
Diff

good
conductance

fast
algorithm

Local Cheeger Inequality

[Andersen Chung Lang 06]
“PPR-push” is O(1/(e(1-)))

Local Cheeger Inequality
[Chung 07]

K., Gleich 2014]
“HK-push” is O(e'C/e )

Open question

[Avron, Horesh 2015]

Open question

This talk




Diffusions, theory & practice

good fast
conductance algorithm
Local Cheeger Inequality | [Andersen Chung Lang O6]
PR “PPR-push” is O(1/(e(1-a)))
Local Cheeger Inequality | [K., Gleich 2014]
HK | [Chung 07] “HK-push” is Oe'C/e )
[Avron, Horesh 2015]
TDPR Open guestion
Gen . .
Ditf Open question This talk

David Gleich and | are working with Olivia Simpson
(a student of Fan Chung’s)




General diffusions: intuition
A diffusion propagates “rank” from a seed across a graph.

seed

@ - high

® - low diffusion value

N
N>

X

X




General diffusions
A diffusion propagates “rank” from a seed across a graph.

General diffusion vector

WIS

g

Sweep over fl




General algorithm

1, Approxmatefso ID7'(F —§)||oo < €
2. Scale, D 'f
3. Then sweep!

How to do this efficiently”?




Algorithm Intuition
From parameters ¢, €, seed s ...

Starting from here... Seed\i | | |
How to end up here?
Co + C; + Co,P2 + C3P38 + ...




Algorithm Intuition

Begin with mass at seed(s
in a “residual” staging area reC
The residuals r, hold mass that
IS unprocessed — it’s like error
| +

Idea: “push” any entry
r )/ d > (some threshold)

C7| + C2| + C3’| +




Push Operation

push — (1) remove entry in r,,
(2) put in f,

Coi+ C1|+ C2|+ C3|+




Push Operation

push — (1) remove entry in r,, c;
(2) put in f,
(3) then scale and
spread to neighbors
INn next r

+C_2 +C3 + ...

Coi + Gy
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(2) put in f,
(3) then scale and
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(repeat)
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Coi + G




Push Operation

push — (1) remove entry in r,,
(2) put in f,
(3) then scale and
spread to neighbors
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(repeat)
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Coi + Gy




Push Operation

push — (1) remove entry in r,,
(2) put in f,
(3) then scale and
spread to neighbors
INn next r
(repeat)




Thresholds

entries < threshold

ERROR equals weighted sum
of entries left in r, | I

- Set threshold so “leftovers”
coi + c7| + 02| + C3|

sumto< ¢




Thresholds

entries < threshold

ERROR equals weighted sum
of entries left in r,

- Set threshold so “leftovers”
sunmto< ¢

Threshold for stage r, is

oo
E/ Z Cj
J=k+1 coPg + C;
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Another perspective
Lv = Dv[)\ Fiedler
Lv = Dv[)\] + “s” with local bias
(I — D712AD~1/2)¢ = {[\] + “s”
AD U =V[1 — \] +“8”

. ~ un» PageRank vector,
(I=aP)V="s a diffusion




Another perspective

LV, = DV A Fiedler

LV, = DV, A\, + S with local bias
(I — D~V2AD~ 12V, =V, A, +S
AD 'V, =V, (1 — \y) +S




Another perspective

LV = DViAc  Fiedler

LV, = DV, A\, + S with local bias
(I — D~V2AD~ 12V, =V, A, +S

AD 'V, =V, (1 — \y) +S

pV = V p S Mix-product property
For Kronecker product




Another perspective

LV = DViAc  Fiedler

LV, = DV, A\, + S with local bias
(I — D~V2AD~ 12V, =V, A, +S

AD 'V, =V, (1 — \y) +S

pV = V p S Mix-product property
For Kronecker product

(I — TT & P)vec(Vy) = vec(S)




Another perspective

—

(I — TT @ P)vec(Vy) = vec(S)
(I —aP)Vv =S8

- generalizes PageRank to
“matrix teleportation parameter”

Standard spectral approach: [ = (] — l\k)_1




Another perspective

—

(I — TT @ P)vec(Vy) = vec(S)
(I —aP)Vv =S8

- generalizes PageRank to
“matrix teleportation parameter”

p— ~ —

Our framework 0
IS equivalent to:

(Details in [K., Gleich KDD 14])



General diffusions: conclusion

THM: For diffusion coetfficients ¢, >= 0 satistying

o0 N
“rate of
c. =1 and C. < €/2

“generalized push” approximates the diffusion f

on a symmetric graph so that D7 (f —§)||oo < €

in work bounded by O(2N? /)

Constant for any inputs!
(If diffusion decays fast)




Proof sketch

N
1. Stop pushing after N terms. Z Ck < €/2
k=0

2. Push residual entries in first N terms if  rx(j) > d(j)e/(2N)

N—1 my

3. Total work is # pushes: > d(j)

k=0 t=1




Push Recap

d(j) work

push — (1) remove entry in r,,
(2) putin p,
(3) then scale and
spread to neighbors
INn nextr

i+ C7|-|- Cg|+ C3|
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Proof sketch

N
1. Stop pushing after N terms. Z Ck < €/2
k=0

2. Push residual entries in first N terms if  rx(j) > d(j)e/(2N)
N—1 my N—1 my

3. Total work is # pushes: > > d(i) <> > n(i)(2N)/e

k=0 t=1 k=0 t=1

4. Eachr, sums to <=1 3" i) < 1
(each push is added to f, which sumsto 1) =

O(2N? /)




Solutions Paths

Benefit of these “push” diffusions?

A direct decomposition is a black box:
Feed in input, get output.

In contrast, the iterative nature of “push” means
running the algorithm is essentially “watching” the
diffusion process occur.
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Benefit of these “push” diffusions?

A direct decomposition is a black box:
Feed in input, get output.

In contrast, the iterative nature of “push” means
running the algorithm is essentially “watching” the
diffusion process occur.

AT >
N
RN
Z N

\l?')»

AN
RN~




Solutions Paths

Netscience —— PageRank Solution Paths
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Solutions Paths

Netscience —— PageRank Solution Paths
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Solutions Paths

Netscience —— PageRank Solution Paths

Each curve s

a node. Its value
increases

as € goes to 0.

Thick black line
shows set of best
conductance.

Degree normalized PageRank
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Bundles of curves
are good clusters

Paths identify
nested clusters




Solutions Paths

Locate nested, good-conductance sets
that a single diffusion + sweep could miss.

Can be done efficiently because the constant-
time approach to computing diffusions enables
efficient storage and analysis of the push process

Total Paths work (for PageRank): o (E( 1 1_a)>2
Still efficient!




Thank you

Heat kernel code available at
http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Solution paths: nttp://arxiv.org/abs/1503.00322

(Solution paths, generalized diffusion code soon)

Ongoing work

- Generalized local Cheeger Inequality
for broader class of diffusions

Questions or suggestions? Email Kyle Kloster at xkloste-at-purdue-dot-edu




