Local clustering with graph diffusions and spectral solution paths

Joint with David F. Gleich, (Purdue), supported by NSF CAREER 1149756-CCF

Kyle Kloster Purdue University

Local Clustering

Given seed(s) *S* in *G*, find a good cluster *near S*

Local Clustering

Given seed(s) *S* in *G*, find a good cluster *near S*

"Near"? -> local, small containing S

"Good"? -> low conductance

Low-conductance sets are clusters

conductance(T) =

edges leaving T# edge endpoints in T

(for small sets T, i.e. vol(T) < vol(G)/2)

= " chance a random edge that touches T exits *T* "

Low-conductance sets are clusters

conductance(T) =

edges leaving T
edge endpoints in T

(for small sets T, i.e. vol(T) < vol(G)/2)

For a global cluster, could use Fiedler...

But we want

a local cluster

Fiedler

Compute Fiedler vector, **v**:

$L\mathbf{v} = \lambda_2 D\mathbf{v}$

"Sweep" over **v**:

1. sort:

 $v(1) \geq v(2) \geq \cdots$

2. for each set $S_k = (1,...,k)$ compute conductance $\phi(S_k)$

3. output best S_k

Fiedler

Compute Fiedler vector, **v**:

$L\mathbf{v} = \lambda_2 D\mathbf{v}$

"Sweep" over **v**:

1. sort:

$$v(1) \geq v(2) \geq \cdots$$

2. for each set $S_k = (1,...,k)$ compute conductance $\phi(S_k)$

3. output best S_k

Cheeger Inequality: Fiedler finds a cluster "not too much worse" than global optimal

But we want **local...**

Local Fiedler and diffusions

[Mahoney Orecchia Vishnoi 12]

"A local spectral method..."

$\begin{aligned} \boldsymbol{L} \boldsymbol{v} &= \boldsymbol{D} \boldsymbol{v}[\lambda] & \text{Fiedler} \\ \boldsymbol{L} \boldsymbol{v} &= \boldsymbol{D} \boldsymbol{v}[\lambda] + \text{``S'' with local bias} & (\text{MOV}) \\ & (\text{normalized seed vector s}) \end{aligned}$

THM: MOV is a scaling of personalized PageRank*!

Local Fiedler and diffusions Intuition: why MOV ~ PageRank $Lv = Dv[\lambda]$ **Fiedler** $Lv = Dv[\lambda] + "s"$ with local bias $(I - D^{-1/2}AD^{-1/2})\hat{\mathbf{v}} = \hat{\mathbf{v}}[\lambda] + \mathbf{s}$ $\boldsymbol{A}\boldsymbol{D}^{-1}\hat{\boldsymbol{v}} = \hat{\boldsymbol{v}}[1-\lambda] + \boldsymbol{s}$ PageRank vector, $(\boldsymbol{I} - \alpha \boldsymbol{P}) \, \hat{\mathbf{v}} = \mathbf{s}^{"}$ a diffusion

PageRank and other diffusions

"Personalized" PageRank (PPR)

[Andersen, Chung, Lang 06]: **local** Cheeger inequality and fast algorithm, "Push" procedure

PageRank and other diffusions

"Personalized" PageRank (PPR)

 $\mathbf{X} = \sum_{k=0} \alpha^k \mathbf{P}^k \hat{\mathbf{S}}$

- [Andersen, Chung, Lang 06]: local Cheeger inequality and fast algorithm, "Push" procedure
- Heat Kernel diffusion (HK) (many more!)

Various diffusions explore different aspects of graphs.

Diffusions, theory & practice

	good conductance	fast algorithm
PR	Local Cheeger Inequality	[Andersen Chung Lang 06] "PPR-push" is $O(1/(\varepsilon(1-\alpha)))$
ΗК	Local Cheeger Inequality [Chung 07]	[K., Gleich 2014] "HK-push" is O(e ^t C/ε)
TDPR	Open question	[Avron, Horesh 2015]
Gen Diff	Open question	This talk

Diffusions, theory & practice

	good	fast
	conductance	algorithm
PR	Local Cheeger Inequality	[Andersen Chung Lang 06] "PPR-push" is $O(1/(\varepsilon(1-\alpha)))$
нк	Local Cheeger Inequality [Chung 07]	[K., Gleich 2014] "HK-push" is Ο(e ^t C/ε)
TDPR	Open question	[Avron, Horesh 2015]
Gen Diff	Open question	This talk
David Gleich and I are working with Olivia Simpson		
(a student of Fan Chung's)		

General diffusions: intuition

A diffusion propagates "rank" from a seed across a graph.

General diffusions

A diffusion propagates "rank" from a seed across a graph.

General algorithm

- 1. Approximate **f** so $\|\boldsymbol{D}^{-1}(\mathbf{f} \hat{\mathbf{f}})\|_{\infty} \leq \epsilon$
- 2. Scale, $\boldsymbol{D}^{-1}\hat{\mathbf{f}}$
- 3. Then sweep!

How to do this efficiently?

Algorithm Intuition

From parameters c_k , ε , seed **s** ...

Starting from here...

Algorithm Intuition

Begin with mass at seed(s) in a "residual" staging area, $\mathbf{r}_0^{\text{seed}}$

The residuals \mathbf{r}_k hold mass that is unprocessed – it's like *error*

Idea: "push" any entry $r_k(j)/d_j > (\text{some threshold})$

push - (1) remove entry in r_k, (2) put in f,

push – (1) remove entry in r_k, (2) put in f, (3) then scale and spread to neighbors in next r

push – (1) remove entry in r_k, (2) put in f, (3) then scale and spread to neighbors in next r

(repeat)


```
push – (1) remove entry in r<sub>k</sub>,
(2) put in f,
(3) then scale and
spread to neighbors
in next r
```

(repeat)


```
push – (1) remove entry in r<sub>k</sub>,
(2) put in f,
(3) then scale and
spread to neighbors
in next r
```

(repeat)

Thresholds

ERROR equals weighted sum of entries left in \mathbf{r}_k

→ Set threshold so "leftovers" sum to < ε

Thresholds

ERROR equals weighted sum of entries left in \mathbf{r}_k

→ Set threshold so "leftovers" sum to < ε

Threshold for stage \mathbf{r}_k is

$$\epsilon / \left(\sum_{j=k+1}^{\infty} c_j \right)$$

Then $\|\boldsymbol{D}^{-1}(\mathbf{f} - \hat{\mathbf{f}})\|_{\infty} \leq \epsilon$

 $Lv = Dv[\lambda]$ **Fiedler** $Lv = Dv[\lambda] + "s"$ with local bias $(I - D^{-1/2}AD^{-1/2})\hat{\mathbf{v}} = \hat{\mathbf{v}}[\lambda] + \mathbf{s}$ $\boldsymbol{A}\boldsymbol{D}^{-1}\hat{\boldsymbol{v}} = \hat{\boldsymbol{v}}[1-\lambda] + \boldsymbol{s}$ PageRank vector, $(\boldsymbol{I} - \alpha \boldsymbol{P}) \, \hat{\mathbf{V}} = \mathbf{S}^{"}$ a diffusion

 $L\mathbf{V}_{k} = D\mathbf{V}_{k}\Lambda_{k}$ Fiedler $L\mathbf{V}_{k} = D\mathbf{V}_{k}\Lambda_{k} + \mathbf{S} \text{ with local bias}$ $(I - D^{-1/2}AD^{-1/2})\hat{\mathbf{V}}_{k} = \hat{\mathbf{V}}_{k}\Lambda_{k} + \hat{\mathbf{S}}$ $AD^{-1}\hat{\mathbf{V}}_{k} = \hat{\mathbf{V}}_{k}(\mathbf{I} - \Lambda_{k}) + \hat{\mathbf{S}}$

 $LV_k = DV_k \wedge k$ **Fiedler** $LV_k = DV_k \wedge h_k + S$ with local bias $(I - D^{-1/2}AD^{-1/2})\hat{V}_k = \hat{V}_k \wedge_k + \hat{S}$ $\mathbf{A}\mathbf{D}^{-1}\hat{\mathbf{V}}_{k} = \hat{\mathbf{V}}_{k}(\mathbf{I} - \Lambda_{k}) + \hat{\mathbf{S}}$ $P\hat{V}_k\Gamma = \hat{V}_k + \bar{S}$ Mix-product property For Kronecker product

 $LV_k = DV_k \wedge k$ **Fiedler** $LV_k = DV_k \wedge h_k + S$ with local bias $(I - D^{-1/2}AD^{-1/2})\hat{V}_k = \hat{V}_k \wedge_k + \hat{S}$ $\mathbf{A}\mathbf{D}^{-1}\hat{\mathbf{V}}_{k} = \hat{\mathbf{V}}_{k}(\mathbf{I} - \Lambda_{k}) + \hat{\mathbf{S}}$ $P\hat{V}_{k}\Gamma = \hat{V}_{k} + \bar{S}$ Mix-product property For Kronecker product

 $(\boldsymbol{I} - \boldsymbol{\Gamma}^T \otimes \boldsymbol{P}) \operatorname{vec}(\hat{\boldsymbol{V}}_k) = \operatorname{vec}(\tilde{\boldsymbol{S}})$

Another perspective $(I - \Gamma^T \otimes P) \operatorname{vec}(\hat{\mathbf{V}}_k) = \operatorname{vec}(\tilde{\mathbf{S}})$ $(I - \alpha P) \hat{\mathbf{v}} = \tilde{\mathbf{s}}$

 generalizes PageRank to "matrix teleportation parameter"

Standard spectral approach: $\Gamma = (I - \Lambda_k)^{-1}$

Another perspective $(\mathbf{I} - \Gamma^T \otimes \mathbf{P}) \operatorname{vec}(\hat{\mathbf{V}}_k) = \operatorname{vec}(\tilde{\mathbf{S}})$ $(\mathbf{I} - \alpha \mathbf{P}) \hat{\mathbf{v}} = \tilde{\mathbf{S}}$

generalizes PageRank to
 "matrix teleportation parameter"

Our framework is equivalent to:

 $\begin{bmatrix} 0 & \tilde{c}_0 \\ & 0 \end{bmatrix}$

(Details in [K., Gleich KDD 14])

General diffusions: conclusion

THM: For diffusion coefficients $c_k \ge 0$ satisfying

"generalized push" approximates the diffusion ${\boldsymbol{\mathsf{f}}}$

on a symmetric graph so that $\|\boldsymbol{D}^{-1}(\mathbf{f} - \hat{\mathbf{f}})\|_{\infty} \leq \epsilon$

in work bounded by $O(2N^2/\epsilon)$

Constant for any inputs! (If diffusion decays fast)

1. Stop pushing after N terms.

$$\sum_{k=0}^{N} c_k \leq \epsilon/2$$

2. Push residual entries in first N terms if $r_k(j) \ge d(j)\epsilon/(2N)$

3. Total work is # pushes:

$$\sum_{k=0}^{N-1}\sum_{t=1}^{m_k} d(j_t)$$

Push Recap

push – (1) remove entry in r_k, (2) put in p, (3) then scale and spread to neighbors in next r

1. Stop pushing after N terms.

$$\sum_{k=0}^{N} c_k \leq \epsilon/2$$

2. Push residual entries in first N terms if $r_k(j) \ge d(j)\epsilon/(2N)$

3. Total work is # pushes:

$$\sum_{k=0}^{N-1}\sum_{t=1}^{m_k} d(j_t)$$

1. Stop pushing after N terms.

$$\sum_{k=0}^{N} c_k \leq \epsilon/2$$

2. Push residual entries in first N terms if $r_k(j) \ge d(j)\epsilon/(2N)$

3. Total work is # pushes:

$$\sum_{k=0}^{N-1} \sum_{t=1}^{m_k} d(j_t) \leq \sum_{k=0}^{N-1} \sum_{t=1}^{m_k} r_k(j_t) (2N) / \epsilon$$

1. Stop pushing after N terms.

$$\sum_{k=0}^{N} c_k \leq \epsilon/2$$

- 2. Push residual entries in first N terms if $r_k(j) \ge d(j)\epsilon/(2N)$
- 3. Total work is # pushes:

$$\sum_{k=0}^{N-1} \sum_{t=1}^{m_k} d(j_t) \le \sum_{k=0}^{N-1} \sum_{t=1}^{m_k} r_k(j_t) (2N) / \epsilon$$

4. Each r_k sums to ≤ 1 (each push is added to **f**, which sums to 1)

$$\sum_{t=1}^{m_k} r_k(j_t) \leq 1$$

$$O(2N^2/\epsilon)$$

Benefit of these "push" diffusions?

A direct decomposition is a black box: Feed in input, get output.

In contrast, the iterative nature of "push" means running the algorithm is essentially "watching" the diffusion process occur.

Benefit of these "push" diffusions?

A direct decomposition is a black box: Feed in input, get output.

In contrast, the iterative nature of "push" means running the algorithm is essentially "watching" the diffusion process occur.

Each curve is a node. Its value increases as ε goes to 0.

Thick black line shows set of best conductance.

Locate nested, good-conductance sets that a single diffusion + sweep could miss.

Can be done efficiently because the constanttime approach to computing diffusions enables efficient storage and analysis of the push process

Total Paths work (for PageRank): $O\left(\frac{1}{\epsilon(1-\alpha)}\right)^2$ Still efficient!

Thank you

Heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Solution paths: http://arxiv.org/abs/1503.00322 (Solution paths, generalized diffusion code soon)

Ongoing work

- Generalized local Cheeger Inequality for broader class of diffusions

Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu