

Local clustering with!
graph diffusions and!

spectral solution paths

Kyle Kloster!
Purdue University!

Joint with

David F. Gleich,

(Purdue), supported by"
NSF CAREER

1149756-CCF

Local Clustering

Given seed(s) S in G, find a good cluster near S

seed

Local Clustering

Given seed(s) S in G, find a good cluster near S

seed

 “Near”? ->

 local, small

 containing S

“Good”? ->

 low conductance

Low-conductance sets are clusters

conductance(T) =
 # edges leaving T

edge endpoints in T

= “ chance a random edge"
 that touches T exits T ”

(for small sets T,

i.e. vol(T) < vol(G)/2)

Low-conductance sets are clusters

conductance(T) =
 # edges leaving T

edge endpoints in T

(for small sets T,

i.e. vol(T) < vol(G)/2)

For a global cluster,

could use Fiedler…

But we want

a local cluster

Fiedler

Lv = �2Dv
“Sweep” over v:

3. output best Sk

2. for each set Sk = (1,…,k)

 compute conductance

�(Sk)

1. sort:

 v (1) � v (2) � · · ·

Compute Fiedler vector, v:

Fiedler

Cheeger Inequality:"
Fiedler finds a cluster “not
too much worse” than"
global optimal

But we want local…

Lv = �2Dv
“Sweep” over v:

3. output best Sk

2. for each set Sk = (1,…,k)

 compute conductance

�(Sk)

1. sort:

 v (1) � v (2) � · · ·

Compute Fiedler vector, v:

Local Fiedler and diffusions

with local bias

Fiedler
Lv = Dv[�]

Lv = Dv[�] + “s”

[Mahoney Orecchia Vishnoi 12]

“A local spectral method…”

THM: MOV is a scaling of personalized PageRank*!

(MOV)

(normalized seed vector s)

Local Fiedler and diffusions

PageRank vector,!
a diffusion

Fiedler

with local bias

Intuition: why MOV ~ PageRank

Lv = Dv[�]

AD�1v̂ = v̂[1 � �] + “s”

Lv = Dv[�] + “s”

(I � D�1/2AD�1/2)v̂ = v̂[�] + “s”

(I � ↵P) v̂ = “s”

PageRank and other diffusions

“Personalized” PageRank (PPR)

[Andersen, Chung, Lang 06]: local Cheeger inequality"
and fast algorithm, “Push” procedure

x =
X

k=0

↵k Pk
ŝ(I � ↵P) x = ŝ

Diffusion perspective
Standard setting

PageRank and other diffusions

“Personalized” PageRank (PPR)

[Andersen, Chung, Lang 06]: local Cheeger inequality"
and fast algorithm, “Push” procedure

Heat Kernel diffusion (HK)"
(many more!)

x =
X

k=0

↵k Pk
ŝ

f =
X

k=0

tk

k ! P
k ŝ

0 20 40 60 80 100

10−5

100

t=1 t=5 t=15 α=0.85

α=0.99

W
ei
gh
t

Length

Various diffusions
explore different
aspects of graphs.

PR

Diffusions, theory & practice

HK

good

conductance

fast

algorithm

Gen!
Diff

Local Cheeger Inequality
 [Andersen Chung Lang 06]

“PPR-push” is O(1/(ε(1-𝛼)))

Local Cheeger Inequality
[Chung 07]

[K., Gleich 2014]

“HK-push” is O(etC/ε)

Open question

[Avron, Horesh 2015]

Open question
 This talk

TDPR

PR

Diffusions, theory & practice

HK

good

conductance

fast

algorithm

Gen!
Diff

Local Cheeger Inequality
 [Andersen Chung Lang 06]

“PPR-push” is O(1/(ε(1-𝛼)))

Local Cheeger Inequality
[Chung 07]

[K., Gleich 2014]

“HK-push” is O(etC/ε)

Open question

[Avron, Horesh 2015]

Open question
 This talk

TDPR

David Gleich and I are working with Olivia Simpson

(a student of Fan Chung’s)

General diffusions: intuition

seed

A diffusion propagates “rank” from a seed across a graph.

= high!
= low! diffusion value!

= local cluster / !
 low-conductance set!

General diffusions

A diffusion propagates “rank” from a seed across a graph.

f =
X

k=0

ck Pk ŝ
General diffusion vector

p0
c0
 p1
c1
 p2
c2
 p3
c3
+
+
 +
 + …
f =

Sweep over f!

General algorithm

1.  Approximate f so

2.  Scale,

3.  Then sweep!

How to do this efficiently?

kD�1(f � f̂)k1  ✏

D�1 f̂

Algorithm Intuition

From parameters ck, ε, seed s …!

Starting from here…

How to end up here?

p0
 p1
 p2
 p3

seed

 …

p0
c0
 p1
c1
 p2
c2
 p3
c3
+
+
 +
 + …

Algorithm Intuition

Begin with mass at seed(s)

in a “residual” staging area, r0

The residuals rk hold mass that
is unprocessed – it’s like error

Idea: “push” any entry

rk(j)/ dj > (some threshold)

r0
 r1
 r2
 r3

seed

 …

p0
 p1
 p2
 p3
+
+
 +
 + …
c0
 c1
 c2
 c3

Push Operation

push – (1) remove entry in rk,"
 (2) put in f,

r0
 r1
 r2
 r3
 …

p0
 p1
 p2
 p3
+
+
 +
 + …
c0
 c1
 c2
 c3

push – (1) remove entry in rk,"
 (2) put in f,

 (3) then scale and

 spread to neighbors

 in next r!

r0
 r1
 r2
 r3
 …

p0
 p1
 p2
 p3
+
+
 +
 + …

c1

Push Operation

c0
 c1
 c2
 c3

Push Operation

r0
 r1
 r2
 r3
 …

p0
 p1
 p2
 p3
+
+
 +
 + …

push – (1) remove entry in rk,"
 (2) put in f,

 (3) then scale and

 spread to neighbors

 in next r

(repeat)

c0
 c1
 c2
 c3

c2

Push Operation

r0
 r1
 r2
 r3
 …

p0
 p1
 p2
 p3
+
+
 +
 + …

c2

push – (1) remove entry in rk,"
 (2) put in f,

 (3) then scale and

 spread to neighbors

 in next r

(repeat)

c0
 c1
 c2
 c3

Push Operation

r0
 r1
 r2
 r3
 …

p0
 p1
 p2
 p3
+
+
 +
 + …

push – (1) remove entry in rk,"
 (2) put in f,

 (3) then scale and

 spread to neighbors

 in next r

(repeat)

c0
 c1
 c2
 c3

c2

c3

Thresholds

ERROR equals weighted sum

of entries left in rk

à  Set threshold so “leftovers”

sum to < ε

r0
 r1
 r2
 r3
 …

p0
 p1
 p2
 p3
+
+
 +
 + …

entries < threshold

c0
 c1
 c2
 c3

Thresholds

ERROR equals weighted sum

of entries left in rk

à  Set threshold so “leftovers”

sum to < ε

r0
 r1
 r2
 r3
 …

p0
 p1
 p2
 p3
+
+
 +
 + …

entries < threshold

Threshold for stage rk is"

c0
 c1
 c2
 c3

Then
kD�1(f � f̂)k1  ✏

✏/

0

@
1X

j=k+1

cj

1

A

Another perspective

PageRank vector,!
a diffusion

Fiedler

with local bias

Lv = Dv[�]

AD�1v̂ = v̂[1 � �] + “s”

Lv = Dv[�] + “s”

(I � D�1/2AD�1/2)v̂ = v̂[�] + “s”

(I � ↵P) v̂ = “s”

Another perspective

AD�1V̂k = V̂k (I � ⇤k) + Ŝ

LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler

with local bias

(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ

Another perspective

PV̂k� = V̂k + S̄

LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler

with local bias

AD�1V̂k = V̂k (I � ⇤k) + Ŝ

(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ

Mix-product property"
For Kronecker product

Another perspective

PV̂k� = V̂k + S̄ Mix-product property"
For Kronecker product

LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler

with local bias

AD�1V̂k = V̂k (I � ⇤k) + Ŝ

(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ

(I � �T ⌦ P)vec(V̂k) = vec(S̃)

Another perspective

(I � ↵P) v̂ = s̃

(I � �T ⌦ P)vec(V̂k) = vec(S̃)

- generalizes PageRank to

 “matrix teleportation parameter”

� = (I � ⇤k)�1Standard spectral approach:

Another perspective

(I � ↵P) v̂ = s̃

(I � �T ⌦ P)vec(V̂k) = vec(S̃)

- generalizes PageRank to

 “matrix teleportation parameter”

� =

2

66664

0 c̃0

0
. . .
. . . c̃N

0

3

77775

Our framework

is equivalent to:

(Details in [K., Gleich KDD 14])

General diffusions: conclusion

THM: For diffusion coefficients ck >= 0 satisfying

“generalized push” approximates the diffusion f

on a symmetric graph so that

in work bounded by

Constant for any inputs!

(If diffusion decays fast)

1X

k=0

ck = 1 and

kD�1(f � f̂)k1  ✏

O(2N2/✏)

NX

k=0

ck  ✏/2 “rate of
decay”

Proof sketch

1. Stop pushing after N terms.

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)
N�1X

k=0

mkX

t=1

d(jt)

Push Recap

r0
 r1
 r2
 r3
 …

p0
 p1
 p2
 p3
+
+
 +
 + …

push – (1) remove entry in rk,"
 (2) put in p,

 (3) then scale and

 spread to neighbors

 in next r

c0
 c1
 c2
 c3

c2

c3

d(j) work

Proof sketch

1. Stop pushing after N terms.

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)
N�1X

k=0

mkX

t=1

d(jt)

Proof sketch

1. Stop pushing after N terms.

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)


N�1X

k=0

mkX

t=1

rk (jt)(2N)/✏
N�1X

k=0

mkX

t=1

d(jt)

Proof sketch

1. Stop pushing after N terms.

O(2N2/✏)

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if

4. Each rk sums to <= 1

(each push is added to f, which sums to 1)

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)


N�1X

k=0

mkX

t=1

rk (jt)(2N)/✏
N�1X

k=0

mkX

t=1

d(jt)

mkX

t=1

rk (jt)  1

Solutions Paths

Benefit of these “push” diffusions?

A direct decomposition is a black box:

Feed in input, get output.

In contrast, the iterative nature of “push” means

running the algorithm is essentially “watching” the
diffusion process occur.

Solutions Paths

Benefit of these “push” diffusions?

A direct decomposition is a black box:

Feed in input, get output.

In contrast, the iterative nature of “push” means

running the algorithm is essentially “watching” the
diffusion process occur.

✏ = 10�3 ✏ = 10�4✏ = 10�2

Solutions Paths

101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

1/ε

D
eg

re
e

no
rm

al
iz

ed
 P

ag
eR

an
k

Netscience −− PageRank Solution Paths

✏ = 10�3 ✏ = 10�4✏ = 10�2

Solutions Paths

101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

1/ε

D
eg

re
e

no
rm

al
iz

ed
 P

ag
eR

an
k

Netscience −− PageRank Solution Paths
Each curve is

a node. Its value

increases

as ε goes to 0.

Thick black line

shows set of best

conductance.

✏ = 10�3 ✏ = 10�4✏ = 10�2

Solutions Paths

101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

1/ε

D
eg

re
e

no
rm

al
iz

ed
 P

ag
eR

an
k

Netscience −− PageRank Solution Paths

✏ = 10�3 ✏ = 10�4

Bundles of curves

are good clusters

Paths identify

nested clusters

✏ = 10�2

Each curve is

a node. Its value

increases

as ε goes to 0.

Thick black line

shows set of best

conductance.

Solutions Paths

Locate nested, good-conductance sets

that a single diffusion + sweep could miss.

Can be done efficiently because the constant-
time approach to computing diffusions enables

efficient storage and analysis of the push process

Total Paths work (for PageRank):

Still efficient!

O
✓

1
✏(1 � ↵)

◆2

Thank you

Heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Solution paths: http://arxiv.org/abs/1503.00322
(Solution paths, generalized diffusion code soon)

Ongoing work!
-  Generalized local Cheeger Inequality"

for broader class of diffusions

Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu

