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Local Clustering
Given seed(s) S in G, find a good cluster near S

seed



Local Clustering
Given seed(s) S in G, find a good cluster near S

seed

 “Near”?  -> 
      local, small
      containing S

“Good”? ->
     low conductance



Low-conductance sets are clusters

conductance( T ) =  # edges leaving T


# edge endpoints in T


= “ chance a random edge"
  that touches T exits T ”



(for small sets T,
i.e. vol(T) < vol(G)/2)





Low-conductance sets are clusters

conductance( T ) =  # edges leaving T


# edge endpoints in T


(for small sets T,
i.e. vol(T) < vol(G)/2)


For a global cluster,
could use Fiedler…
But we want
a local cluster



Fiedler

Lv = �2Dv
“Sweep” over v:  

3. output best Sk

2. for each set Sk = (1,…,k)
    compute conductance

�(Sk )

1. sort:
 v (1) � v (2) � · · ·

Compute Fiedler vector, v:  



Fiedler

Cheeger Inequality:"
Fiedler finds a cluster “not 
too much worse” than"
global optimal

But we want local…

Lv = �2Dv
“Sweep” over v:  

3. output best Sk

2. for each set Sk = (1,…,k)
    compute conductance

�(Sk )

1. sort:
 v (1) � v (2) � · · ·

Compute Fiedler vector, v:  



Local Fiedler and diffusions

with local bias
FiedlerLv = Dv[�]

Lv = Dv[�] + “s”

[Mahoney Orecchia Vishnoi 12]
“A local spectral method…”

THM: MOV is a scaling of personalized PageRank*!

(MOV)
(normalized seed vector s)



Local Fiedler and diffusions

PageRank vector,!
a diffusion

Fiedler
with local bias

Intuition: why MOV ~ PageRank
Lv = Dv[�]

AD�1v̂ = v̂[1 � �] + “s”

Lv = Dv[�] + “s”

(I � D�1/2AD�1/2)v̂ = v̂[�] + “s”

(I � ↵P) v̂ = “s”



PageRank and other diffusions
“Personalized” PageRank (PPR) 
[Andersen, Chung, Lang 06]: local Cheeger inequality"
and fast algorithm, “Push” procedure


x =
X

k=0

↵k Pk
ŝ(I � ↵P) x = ŝ

Diffusion perspectiveStandard setting



PageRank and other diffusions
“Personalized” PageRank (PPR) 
[Andersen, Chung, Lang 06]: local Cheeger inequality"
and fast algorithm, “Push” procedure


Heat Kernel diffusion (HK)"
(many more!)

x =
X

k=0

↵k Pk
ŝ

f =
X

k=0
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Various diffusions 
explore different 
aspects of graphs.



PR

Diffusions, theory & practice

HK

good
conductance

fast 
algorithm

Gen!
Diff

Local Cheeger Inequality [Andersen Chung Lang 06]
“PPR-push” is O(1/(ε(1-𝛼)))

Local Cheeger Inequality 
[Chung 07]

[K., Gleich 2014]
“HK-push” is O(etC/ε )

Open question
[Avron, Horesh 2015]

Open question This talk

TDPR



PR

Diffusions, theory & practice

HK

good
conductance

fast 
algorithm

Gen!
Diff

Local Cheeger Inequality [Andersen Chung Lang 06]
“PPR-push” is O(1/(ε(1-𝛼)))

Local Cheeger Inequality 
[Chung 07]

[K., Gleich 2014]
“HK-push” is O(etC/ε )

Open question
[Avron, Horesh 2015]

Open question This talk

TDPR

David Gleich and I are working with Olivia Simpson
(a student of Fan Chung’s)



General diffusions: intuition

seed

A diffusion propagates “rank” from a seed across a graph.

= high!
= low! diffusion value!

= local cluster / !
   low-conductance set!



General diffusions
A diffusion propagates “rank” from a seed across a graph.

f =
X

k=0

ck Pk ŝ
General diffusion vector

p0c0 p1c1 p2c2 p3c3++ + + …f =

Sweep over f!



General algorithm

1.  Approximate f so
2.  Scale, 
3.  Then sweep!

How to do this efficiently? 

kD�1(f � f̂)k1  ✏

D�1 f̂



Algorithm Intuition
From parameters ck, ε, seed s …!

Starting from here…





How to end up here?

p0 p1 p2 p3

seed

 …

p0c0 p1c1 p2c2 p3c3++ + + …



Algorithm Intuition

Begin with mass at seed(s)
in a “residual” staging area, r0

The residuals rk hold mass that 
is unprocessed – it’s like error


Idea: “push” any entry
rk(j)/ dj > (some threshold) 

r0 r1 r2 r3

seed

 …

p0 p1 p2 p3++ + + …c0 c1 c2 c3



Push Operation

push – (1) remove entry in rk,"
            (2) put in f,

r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …c0 c1 c2 c3



push – (1) remove entry in rk,"
            (2) put in f,
            (3) then scale and

   spread to neighbors
   in next r!



r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …

c1

Push Operation

c0 c1 c2 c3



Push Operation

r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …

push – (1) remove entry in rk,"
            (2) put in f,
            (3) then scale and

   spread to neighbors
   in next r

(repeat)

c0 c1 c2 c3

c2



Push Operation

r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …

c2

push – (1) remove entry in rk,"
            (2) put in f,
            (3) then scale and

   spread to neighbors
   in next r

(repeat)

c0 c1 c2 c3



Push Operation

r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …

push – (1) remove entry in rk,"
            (2) put in f,
            (3) then scale and

   spread to neighbors
   in next r

(repeat)

c0 c1 c2 c3

c2
c3



Thresholds

ERROR equals weighted sum
of entries left in rk

à  Set threshold so “leftovers” 

sum to <  ε

r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …

entries < threshold 

c0 c1 c2 c3



Thresholds

ERROR equals weighted sum
of entries left in rk

à  Set threshold so “leftovers” 

sum to <  ε

r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …

entries < threshold 

Threshold for stage rk is"


c0 c1 c2 c3

Then kD�1(f � f̂)k1  ✏

✏/

0

@
1X

j=k+1

cj

1

A



Another perspective

PageRank vector,!
a diffusion

Fiedler
with local bias

Lv = Dv[�]

AD�1v̂ = v̂[1 � �] + “s”

Lv = Dv[�] + “s”

(I � D�1/2AD�1/2)v̂ = v̂[�] + “s”

(I � ↵P) v̂ = “s”



Another perspective

AD�1V̂k = V̂k (I � ⇤k ) + Ŝ

LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler
with local bias

(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ



Another perspective

PV̂k� = V̂k + S̄

LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler
with local bias

AD�1V̂k = V̂k (I � ⇤k ) + Ŝ

(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ

Mix-product property"
For Kronecker product



Another perspective

PV̂k� = V̂k + S̄ Mix-product property"
For Kronecker product

LVk = DVk⇤k

LVk = DVk⇤k + S
Fiedler
with local bias

AD�1V̂k = V̂k (I � ⇤k ) + Ŝ

(I � D�1/2AD�1/2)V̂k = V̂k⇤k + Ŝ

(I � �T ⌦ P)vec(V̂k ) = vec(S̃)



Another perspective

(I � ↵P) v̂ = s̃

(I � �T ⌦ P)vec(V̂k ) = vec(S̃)

- generalizes PageRank to
   “matrix teleportation parameter”

� = (I � ⇤k )�1Standard spectral approach:



Another perspective

(I � ↵P) v̂ = s̃

(I � �T ⌦ P)vec(V̂k ) = vec(S̃)

- generalizes PageRank to
   “matrix teleportation parameter”

� =

2

66664

0 c̃0

0
. . .
. . . c̃N

0

3

77775

Our framework
is equivalent to:

(Details in [K., Gleich  KDD 14])



General diffusions: conclusion
THM: For diffusion coefficients ck >= 0 satisfying 



“generalized push” approximates the diffusion f

on a symmetric graph so that 

in work bounded by

Constant for any inputs!
(If diffusion decays fast)

1X

k=0

ck = 1 and

kD�1(f � f̂)k1  ✏

O(2N2/✏)

NX

k=0

ck  ✏/2 “rate of 
decay”



Proof sketch

1. Stop pushing after N terms. 
NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)
N�1X

k=0

mkX

t=1

d(jt )



Push Recap

r0 r1 r2 r3  …

p0 p1 p2 p3++ + + …

push – (1) remove entry in rk,"
            (2) put in p,
            (3) then scale and

   spread to neighbors
   in next r

c0 c1 c2 c3

c2
c3

d(j) work



Proof sketch

1. Stop pushing after N terms. 
NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)
N�1X

k=0

mkX

t=1

d(jt )



Proof sketch

1. Stop pushing after N terms. 
NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)


N�1X

k=0

mkX

t=1

rk (jt )(2N)/✏
N�1X

k=0

mkX

t=1

d(jt )



Proof sketch

1. Stop pushing after N terms. 

O(2N2/✏)

NX

k=0

ck  ✏/2

2. Push residual entries in first N terms if 

4. Each rk sums to <= 1
(each push is added to f, which sums to 1)

3. Total work is # pushes:

rk (j) � d(j)✏/(2N)


N�1X

k=0

mkX

t=1

rk (jt )(2N)/✏
N�1X

k=0

mkX

t=1

d(jt )

mkX

t=1

rk (jt )  1



Solutions Paths
Benefit of these “push” diffusions?

A direct decomposition is a black box:
Feed in input, get output.

In contrast, the iterative nature of “push” means
running the algorithm is essentially “watching” the 
diffusion process occur.




Solutions Paths
Benefit of these “push” diffusions?

A direct decomposition is a black box:
Feed in input, get output.

In contrast, the iterative nature of “push” means
running the algorithm is essentially “watching” the 
diffusion process occur.


✏ = 10�3 ✏ = 10�4✏ = 10�2



Solutions Paths
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Solutions Paths
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Netscience −− PageRank Solution Paths
Each curve is 
a node. Its value 
increases
as ε goes to 0.


Thick black line
shows set of best
conductance.
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Solutions Paths
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Netscience −− PageRank Solution Paths

✏ = 10�3 ✏ = 10�4

Bundles of curves
are good clusters

Paths identify 
nested clusters

✏ = 10�2

Each curve is 
a node. Its value 
increases
as ε goes to 0.


Thick black line
shows set of best
conductance.



Solutions Paths

Locate nested, good-conductance sets
that a single diffusion + sweep could miss.

Can be done efficiently because the constant-
time approach to computing diffusions enables
efficient storage and analysis of the push process

Total Paths work (for PageRank):
Still efficient!

O
✓

1
✏(1 � ↵)

◆2



Thank you
Heat kernel code available at

http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Solution paths:   http://arxiv.org/abs/1503.00322
(Solution paths, generalized diffusion code soon)

Ongoing work!
-  Generalized local Cheeger Inequality"

for broader class of diffusions


Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu


