A Nearly Sublinear Approximation to $\exp{\{\mathbf{P}\}}\mathbf{e}_i$ for Large Sparse Matrices from Social Networks

Kyle Kloster and David F. Gleich

Purdue University

December 14, 2013

Supported by NSF CAREER 1149756-CCF

Columns of the Matrix Exponential

 $exp\{\ \textbf{A}\ \}$ used for link-prediction, node centrality, and clustering. Why?

Columns of the Matrix Exponential

 $exp{A}$ used for link-prediction, node centrality, and clustering. Why?

$$\exp\{\mathbf{A}\} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k$$

(A^k)_{ij} gives the number of length-k walks from i to j, so...
Large entries of exp{A} denote "important" nodes / links

Columns of the Matrix Exponential

 $exp{A}$ used for link-prediction, node centrality, and clustering. Why?

$$\exp\{\mathbf{A}\} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k$$

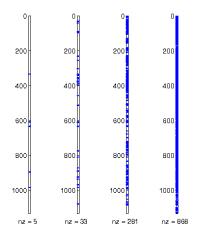
- $(\mathbf{A}^k)_{ij}$ gives the number of length-k walks from i to j, so...
- Large entries of exp{A} denote "important" nodes / links
- exp{A} is common, but other f(A) can be used: pagerank and heatkernel PR
- Assume column stochastic, $\mathbf{P} = \mathbf{G}\mathbf{D}^{-1}$ (more on this later)

Difficulties with current methods: Sidje, TOMS 1998; Al-Mohy and Higham, SISC 2011

- Leading methods for exp{A}b use Krylov or Taylor methods: "basically" repeated mat-vecs
- "Small world" property: graph diameter ≤ 4 ⇒ repeated mat-vecs fill in rapidly (see picture)
- Not designed specifically for sparse networks.

exp(A)

Fill-in from repeated matvecs



Vectors $\mathbf{P}^{k}\mathbf{e}_{i}$ for k = 1, 2, 3, 4. n = 1133

Kyle Kloster (Purdue)

New method: avoid mat-vecs! \rightarrow use a **local** method.

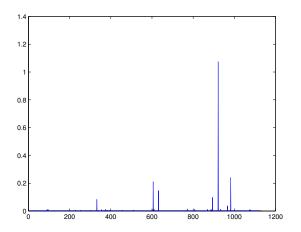
Local algorithms run in time proportional to size of output:

sparse solution vector = small runtime

Instead of matvecs, we do specially-selected vector adds using a relaxation method.

exp(A)

$\exp{\{\mathbf{P}\}\mathbf{e}_i}$ is a localized vector



x-axis: vector index, y-axis: magnitude of entry the column of exp{ ${\bf P} \}$ produced by previous slide's matvecs

Kyle Kloster (Purdue)

Approximation of $exp\{P\}e_i$

December 14, 2013 6 / 22

Overview

Outline of Nexpokit method

- 1. Express $\exp{\{\mathbf{A}\}\mathbf{e}_i}$ via a Taylor polynomial
- 2. Form large linear system out of Taylor terms
- 3. Use sparse solver to approximate each terms' largest entries
- 4. Combine approximated terms into a solution

In terms of Taylor terms

Taylor polynomial:

$$\exp\{\mathbf{A}\}\mathbf{e}_i \approx \left(\mathbf{I} + \mathbf{A} + \frac{1}{2}\mathbf{A}^2 + \frac{1}{3!}\mathbf{A}^3 + \dots + \frac{1}{N!}\mathbf{A}^N\right)\mathbf{e}_i$$

In terms of Taylor terms

Taylor polynomial:

$$\exp\{\mathbf{A}\}\mathbf{e}_{i} \approx \left(\mathbf{I} + \mathbf{A} + \frac{1}{2}\mathbf{A}^{2} + \frac{1}{3!}\mathbf{A}^{3} + \dots + \frac{1}{N!}\mathbf{A}^{N}\right)\mathbf{e}_{i}$$

Compute terms recursively: $\mathbf{v}_{k} = \frac{1}{k!}\mathbf{A}^{k}\mathbf{e}_{i} = \frac{1}{k}\mathbf{A}\left(\frac{1}{(k-1)!}\mathbf{A}^{k-1}\right)\mathbf{e}_{i}$

$$\mathbf{v}_k = \frac{1}{k} \mathbf{A} \mathbf{v}_{k-1}$$

In terms of Taylor terms

Taylor polynomial:

$$\exp\{\mathbf{A}\}\mathbf{e}_i \approx \left(\mathbf{I} + \mathbf{A} + \frac{1}{2}\mathbf{A}^2 + \frac{1}{3!}\mathbf{A}^3 + \dots + \frac{1}{N!}\mathbf{A}^N\right)\mathbf{e}_i$$

Compute terms recursively: $\mathbf{v}_k = \frac{1}{k!} \mathbf{A}^k \mathbf{e}_i = \frac{1}{k} \mathbf{A} \left(\frac{1}{(k-1)!} \mathbf{A}^{k-1} \right) \mathbf{e}_i$

$$\mathbf{v}_k = \frac{1}{k} \mathbf{A} \mathbf{v}_{k-1}$$

Then $\exp{\{\mathbf{A}\}}\mathbf{e}_i \approx \mathbf{v}_0 + \mathbf{v}_1 + \cdots + \mathbf{v}_{N-1} + \mathbf{v}_N$ (But we want to avoid computing \mathbf{v}_i in full...)

Forming a linear system

So we convert the Taylor polynomial into a linear system:

Forming a linear system

So we convert the Taylor polynomial into a linear system:

$$\begin{bmatrix} \mathbf{I} & & & \\ -\mathbf{A}/1 & \mathbf{I} & & \\ & -\mathbf{A}/2 & \ddots & \\ & & \ddots & \mathbf{I} \\ & & -\mathbf{A}/N & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_N \end{bmatrix} = \begin{bmatrix} \mathbf{e}_i \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Forming a linear system

So we convert the Taylor polynomial into a linear system:

$$\begin{bmatrix} \mathbf{I} & & & & \\ -\mathbf{A}/1 & \mathbf{I} & & & \\ & -\mathbf{A}/2 & \ddots & & \\ & & \ddots & \mathbf{I} \\ & & & -\mathbf{A}/N & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_N \end{bmatrix} = \begin{bmatrix} \mathbf{e}_i \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

From

$$\begin{aligned} \mathbf{v}_{k} &= \frac{1}{k} \mathbf{A} \mathbf{v}_{k-1} \\ \exp{\{\mathbf{A}\}} \mathbf{e}_{i} &\approx \mathbf{v}_{0} + \mathbf{v}_{1} + \dots + \mathbf{v}_{N-1} + \mathbf{v}_{N} \\ \text{(never formed explicitly)} \end{aligned}$$

Basic idea of Gauss Southwell (GS): solving Mx = b when x is "effectively sparse" (i.e. a localized vector)

Basic idea of Gauss Southwell (GS): solving Mx = b when x is "effectively sparse" (i.e. a localized vector)

1. Set $\mathbf{x}^0 = 0$, $\mathbf{r}^0 = \mathbf{b}$, then iterate:

Basic idea of Gauss Southwell (GS): solving Mx = b when x is "effectively sparse" (i.e. a localized vector)

- 1. Set $\mathbf{x}^0 = 0$, $\mathbf{r}^0 = \mathbf{b}$, then iterate:
- 2. At step k, relax largest entry of \mathbf{r}^k (denoted r_i^k), add to \mathbf{x}^k ;

$$\mathbf{x}^{k+1} = \mathbf{x}^k + r_i^k \cdot \mathbf{e}_i$$

Basic idea of Gauss Southwell (GS): solving Mx = b when x is "effectively sparse" (i.e. a localized vector)

- 1. Set $\mathbf{x}^0 = 0$, $\mathbf{r}^0 = \mathbf{b}$, then iterate:
- 2. At step k, relax largest entry of \mathbf{r}^k (denoted r_i^k), add to \mathbf{x}^k ;

$$\mathbf{x}^{k+1} = \mathbf{x}^k + r_i^k \cdot \mathbf{e}_i$$

3. Add corresponding column of **M** to residual:

$$\mathbf{r}^{k+1} = (\mathbf{r}^k - r_i^k \cdot \mathbf{e}_i) + r_i^k \cdot \mathbf{M}(:, i)$$

NEXPOKIT

Apply GS to our linear system, $\mathbf{M}\mathbf{\bar{v}} = \mathbf{\bar{e}}_i$:

$$\begin{bmatrix} \mathbf{I} & & & \\ -\mathbf{A}/1 & \mathbf{I} & & \\ & -\mathbf{A}/2 & \ddots & \\ & & \ddots & \mathbf{I} \\ & & & -\mathbf{A}/N & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_N \end{bmatrix} = \begin{bmatrix} \mathbf{e}_i \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Now residual has index and block section: r(i, j). Iteration reduces to: (1) adding $r(i, j)^k$ to a single entry of **x**, our approximation; (2) adding scaled column, $\frac{r(i, j)^k}{i} \mathbf{A}(:, i)$, to section j of the residual.

Convergence and Implementation

Scaling $\frac{r(i,j)^k}{j} \mathbf{A}(:,i)$ guarantees $\|\mathbf{r}^k\|_1$ decreases, for column stochastic \mathbf{A} :

Convergence and Implementation

Scaling $\frac{r(i,j)^k}{j} \mathbf{A}(:,i)$ guarantees $\|\mathbf{r}^k\|_1$ decreases, for column stochastic \mathbf{A} :

$$\|\mathbf{r}^{k+1}\|_1 = \|\mathbf{r}^k\|_1 - r(i,j)^k + \frac{r(i,j)^k}{j} = \|\mathbf{r}^k\|_1 - r(i,j)^k (1 - \frac{1}{j})$$

Largest entry, r(i,j) is bounded below by average, $r(i,j) > ||\mathbf{r}||_1/(\# \text{ non zeros in } \mathbf{r})$.

Convergence and Implementation

Scaling $\frac{r(i,j)^k}{j} \mathbf{A}(:,i)$ guarantees $\|\mathbf{r}^k\|_1$ decreases, for column stochastic **A**:

$$\|\mathbf{r}^{k+1}\|_1 = \|\mathbf{r}^k\|_1 - r(i,j)^k + \frac{r(i,j)^k}{j} = \|\mathbf{r}^k\|_1 - r(i,j)^k (1 - \frac{1}{j})$$

Largest entry, r(i,j) is bounded below by average, $r(i,j) > ||\mathbf{r}||_1/(\# \text{ non zeros in } \mathbf{r})$.

No component of large linear system formed explicitly:

- residual vector stored in a heap (alternative: queue with threshold)
- matrix **M** not formed at all
- blocks \mathbf{v}_j not stored separately

"A Nearly Sublinear Approximation ...

- Converges for stochastic matrices
- "Nearly sublinear" if d_{max} = O(loglog n) (unrealistic)
- In practice, sublinear if NNZ = O(n)
- Less work than a single mat-vec

11

"A Nearly Sublinear Approximation ...

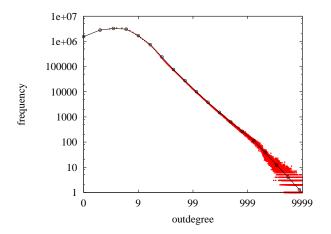
- Converges for stochastic matrices
- "Nearly sublinear" if *d*_{max} = *O*(loglog*n*) (unrealistic)
- In practice, sublinear if NNZ = O(n)
- Less work than a single mat-vec
- \blacksquare New: for power-law degree distributed networks, the runtime for an error of ε is

$$\log\left(1/\varepsilon\right)\left(1/\varepsilon\right)^{3/2}d_{\max}\log(d_{\max})^2$$

Social networks tend to have $d_{\max} = O(n^r)$ for r < 1, so this is sublinear in n.

Analysis

Power-law degree distribution



[Laboratory for Web Algorithms, http://law.di.unimi.it/index.php]

Kyle Kloster (Purdue)

Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:

- decrease in $\|\mathbf{r}\|$ depends on largest value in \mathbf{r} , r_i
- lowerbound r_i using the average value of **r**
- average value = $\|\mathbf{r}\|/(\# \text{ of nonzeros in } \mathbf{r})$
- (# of nonzeros in **r**) upper bounded by $d_{max} * (\#iterations)$

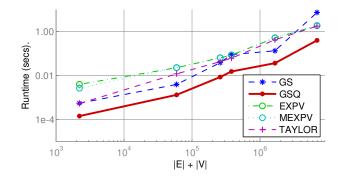
Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:

- decrease in $\|\mathbf{r}\|$ depends on largest value in \mathbf{r} , r_i
- lowerbound r_i using the average value of **r**
- average value = $\|\mathbf{r}\|/(\# \text{ of nonzeros in } \mathbf{r})$
- (# of nonzeros in **r**) upper bounded by $d_{max} * (\#iterations)$

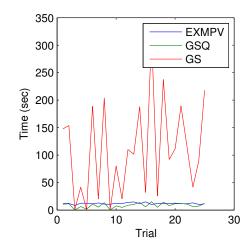
Power-law network: # of nonzeros in **r** after *t* iterations grows like O(t) instead of $d_{\max} * t$. \Rightarrow average value can't decay too fast. Hence, $\|\mathbf{r}\|$ is guaranteed to decrease "fast enough": $\|\mathbf{r}^t\| < O(t^{-2/3})$

Runtime v. Graph Size



"GSQ" is a version of our Gauss-Southwell method that stores the residual vector in a queue instead of a heap.

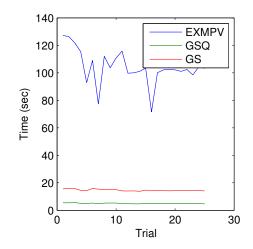
Runtime on larger networks



For ljournal-2008, n = 5,363,260, ave degree = 14.7.

Kyle Kloster (Purdue)

Runtime on larger networks

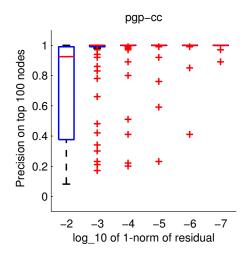


For webbase-2001, n = 118, 142, 155, ave degree = 8.6.

Kyle Kloster (Purdue)

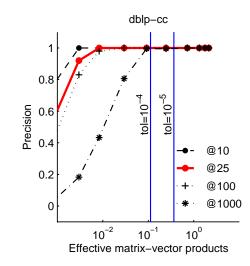
Approximation of $\exp{\{\mathbf{P}\}\mathbf{e}_i}$

Accuracy of algorithm



For pgp-cc n = 10,680, but this is representative of dataset.

Number of operations performed



For dblp-cc, n = 226, 413. Again, this is representative.

Approximation of exp{P}e;

Future Work

- Adapt the method to other functions: $\cosh(x), x^{\frac{1}{p}}, \log(x)$.
- Allow for scaling, $f(t\mathbf{A})\mathbf{e}_i$.
- Allow for $f(\mathbf{A})$ times a vector \mathbf{v} (other than \mathbf{e}_i).
- Improve domain of convergence, $\rho(\mathbf{A}) \in (0, 1]$.

Code and Further Details

Code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit

For details and references, see our paper at

http://arxiv.org/abs/1310.3423