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exp(A)

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?

exp{A} =
∞∑
k=0

1

k!
Ak

(Ak)ij gives the number of length-k walks from i to j , so...

Large entries of exp{A} denote “important” nodes / links

exp{A} is common, but other f (A) can be used:
pagerank and heatkernel PR

Assume column stochastic, P = GD−1 (more on this later)
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exp(A)

Difficulties with current methods:
Sidje, TOMS 1998; Al-Mohy and Higham, SISC 2011

Leading methods for exp{A}b use Krylov or Taylor methods:
“basically” repeated mat-vecs

“Small world” property: graph diameter ≤ 4 ⇒ repeated mat-vecs fill
in rapidly (see picture)

Not designed specifically for sparse networks.
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exp(A)

Fill-in from repeated matvecs

Vectors Pkei for k = 1, 2, 3, 4. n = 1133
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exp(A)

Local Method

New method: avoid mat-vecs! → use a local method.

Local algorithms run in time proportional to size of output:

sparse solution vector = small runtime

Instead of matvecs, we do specially-selected vector adds using a relaxation
method.
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exp(A)

exp{P}ei is a localized vector

x-axis: vector index, y-axis: magnitude of entry
the column of exp{P} produced by previous slide’s matvecs
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Our method

Overview

Outline of Nexpokit method

1. Express exp{A}ei via a Taylor polynomial

2. Form large linear system out of Taylor terms

3. Use sparse solver to approximate each terms’ largest entries

4. Combine approximated terms into a solution
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Our method

In terms of Taylor terms

Taylor polynomial:

exp{A}ei ≈
(
I + A + 1

2A
2 + 1

3!A
3 + · · ·+ 1

N!A
N
)
ei

Compute terms recursively: vk = 1
k!A

kei = 1
kA
(

1
(k−1)!A

k−1
)
ei

vk = 1
kAvk−1

Then exp{A}ei ≈ v0 + v1 + · · ·+ vN−1 + vN
(But we want to avoid computing vj in full...)
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Our method

Forming a linear system

So we convert the Taylor polynomial into a linear system:


I

−A/1 I

−A/2
. . .
. . . I

−A/N I




v0
v1
v2
...
vN

 =


ei
0
0
...
0


From
vk = 1

kAvk−1
exp{A}ei ≈ v0 + v1 + · · ·+ vN−1 + vN
(never formed explicitly)
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Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

1. Set x0 = 0, r0 = b, then iterate:

2. At step k , relax largest entry of rk (denoted rki ), add to xk ;

xk+1 = xk + rki · ei

3. Add corresponding column of M to residual:

rk+1 = (rk − rki · ei ) + rki ·M(:, i)
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Our method

NEXPOKIT

Apply GS to our linear system, Mv̄ = ēi :
I

−A/1 I

−A/2
. . .
. . . I

−A/N I




v0
v1
v2
...
vN

 =


ei
0
0
...
0


Now residual has index and block section: r(i , j). Iteration reduces to:
(1) adding r(i , j)k to a single entry of x, our approximation;

(2) adding scaled column, r(i ,j)k

j A(:, i), to section j of the residual.
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Our method

Convergence and Implementation

Scaling r(i ,j)k

j A(:, i) guarantees ‖rk‖1 decreases, for column stochastic A:

‖rk+1‖1 = ‖rk‖1 − r(i , j)k + r(i ,j)k

j = ‖rk‖1 − r(i , j)k(1− 1
j )

Largest entry, r(i , j) is bounded below by average, r(i , j) > ‖r‖1/(# non
zeros in r).

No component of large linear system formed explicitly:
- residual vector stored in a heap (alternative: queue with threshold)
- matrix M not formed at all
- blocks vj not stored separately
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Analysis

“A Nearly Sublinear Approximation ... ”

Converges for stochastic matrices

“Nearly sublinear” – if dmax = O(loglogn) (unrealistic)

In practice, sublinear if NNZ = O(n)

Less work than a single mat-vec

New: for power-law degree distributed networks, the runtime for an
error of ε is

log (1/ε) (1/ε)3/2 dmaxlog(dmax)2

Social networks tend to have dmax = O(nr ) for r < 1, so this is
sublinear in n.
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Analysis

Power-law degree distribution
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[Laboratory for Web Algorithms, http://law.di.unimi.it/index.php]
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Analysis

Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:

decrease in ‖r‖ depends on largest value in r, ri

lowerbound ri using the average value of r

average value = ‖r‖/(# of nonzeros in r)

(# of nonzeros in r) upper bounded by dmax ∗ (#iterations)

Power-law network: # of nonzeros in r after t iterations grows like O(t)
instead of dmax ∗ t. ⇒ average value can’t decay too fast. Hence, ‖r‖ is
guaranteed to decrease ”fast enough”: ‖rt‖ < O(t−2/3)
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Results and Future Work

Runtime v. Graph Size
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“GSQ” is a version of our Gauss-Southwell method that stores the residual
vector in a queue instead of a heap.
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Results and Future Work

Runtime on larger networks
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For ljournal-2008, n = 5, 363, 260, ave degree = 14.7.
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For webbase-2001, n = 118, 142, 155, ave degree = 8.6.
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Results and Future Work

Accuracy of algorithm

For pgp-cc n = 10, 680, but this is representative of dataset.
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Results and Future Work

Number of operations performed
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For dblp-cc, n = 226, 413. Again, this is representative.
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Results and Future Work

Future Work

Adapt the method to other functions: cosh(x), x
1
p , log(x).

Allow for scaling, f (tA)ei .

Allow for f (A) times a vector v (other than ei ).

Improve domain of convergence, ρ(A) ∈ (0, 1].
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Results and Future Work

Code and Further Details

Code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit

For details and references, see our paper at

http://arxiv.org/abs/1310.3423
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