A Nearly Sublinear Approximation to $\exp \{\mathbf{P}\} \mathbf{e}_{\boldsymbol{i}}$ for Large Sparse Matrices from Social Networks

Kyle Kloster and David F. Gleich

Purdue University
December 14, 2013

Supported by NSF CAREER 1149756-CCF

Columns of the Matrix Exponential

$\exp \{\mathbf{A}\}$ used for link-prediction, node centrality, and clustering. Why?

Columns of the Matrix Exponential

$\exp \{\mathbf{A}\}$ used for link-prediction, node centrality, and clustering. Why?

$$
\exp \{\mathbf{A}\}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k}
$$

- $\left(\mathbf{A}^{k}\right)_{i j}$ gives the number of length- k walks from i to j, so...

■ Large entries of $\exp \{\mathbf{A}\}$ denote "important" nodes / links

Columns of the Matrix Exponential

$\exp \{\mathbf{A}\}$ used for link-prediction, node centrality, and clustering. Why?

$$
\exp \{\mathbf{A}\}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k}
$$

- $\left(\mathbf{A}^{k}\right)_{i j}$ gives the number of length- k walks from i to j, so...

■ Large entries of $\exp \{\mathbf{A}\}$ denote "important" nodes / links

- $\exp \{\mathbf{A}\}$ is common, but other $f(\mathbf{A})$ can be used: pagerank and heatkernel PR
- Assume column stochastic, $\mathbf{P}=\mathbf{G D}^{-1}$ (more on this later)

Difficulties with current methods: Sidje, TOMS 1998; Al-Mohy and Higham, SISC 2011

■ Leading methods for $\exp \{\mathbf{A}\} \mathbf{b}$ use Krylov or Taylor methods: "basically" repeated mat-vecs
■ "Small world" property: graph diameter $\leq 4 \Rightarrow$ repeated mat-vecs fill in rapidly (see picture)
■ Not designed specifically for sparse networks.

Fill-in from repeated matvecs

Vectors $\mathbf{P}^{k} \mathbf{e}_{i}$ for $k=1,2,3,4 . n=1133$

Local Method

New method: avoid mat-vecs! \rightarrow use a local method.

Local algorithms run in time proportional to size of output: sparse solution vector $=$ small runtime

Instead of matvecs, we do specially-selected vector adds using a relaxation method.

$\exp \{\mathbf{P}\} \mathbf{e}_{i}$ is a localized vector

x-axis: vector index, y-axis: magnitude of entry the column of $\exp \{\mathbf{P}\}$ produced by previous slide's matvecs

Overview

Outline of Nexpokit method

1. Express $\exp \{\mathbf{A}\} \mathbf{e}_{i}$ via a Taylor polynomial
2. Form large linear system out of Taylor terms
3. Use sparse solver to approximate each terms' largest entries
4. Combine approximated terms into a solution

In terms of Taylor terms

Taylor polynomial:

$$
\exp \{\mathbf{A}\} \mathbf{e}_{i} \approx\left(\mathbf{I}+\mathbf{A}+\frac{1}{2} \mathbf{A}^{2}+\frac{1}{3!} \mathbf{A}^{3}+\cdots+\frac{1}{N!} \mathbf{A}^{N}\right) \mathbf{e}_{i}
$$

In terms of Taylor terms

Taylor polynomial:

$$
\exp \{\mathbf{A}\} \mathbf{e}_{i} \approx\left(\mathbf{I}+\mathbf{A}+\frac{1}{2} \mathbf{A}^{2}+\frac{1}{3!} \mathbf{A}^{3}+\cdots+\frac{1}{N!} \mathbf{A}^{N}\right) \mathbf{e}_{i}
$$

Compute terms recursively: $\mathbf{v}_{k}=\frac{1}{k!} \mathbf{A}^{k} \mathbf{e}_{i}=\frac{1}{k} \mathbf{A}\left(\frac{1}{(k-1)!} \mathbf{A}^{k-1}\right) \mathbf{e}_{i}$

$$
\mathbf{v}_{k}=\frac{1}{k} \mathbf{A} \mathbf{v}_{k-1}
$$

In terms of Taylor terms

Taylor polynomial:

$$
\exp \{\mathbf{A}\} \mathbf{e}_{i} \approx\left(\mathbf{I}+\mathbf{A}+\frac{1}{2} \mathbf{A}^{2}+\frac{1}{3!} \mathbf{A}^{3}+\cdots+\frac{1}{N!} \mathbf{A}^{N}\right) \mathbf{e}_{i}
$$

Compute terms recursively: $\mathbf{v}_{k}=\frac{1}{k!} \mathbf{A}^{k} \mathbf{e}_{i}=\frac{1}{k} \mathbf{A}\left(\frac{1}{(k-1)!} \mathbf{A}^{k-1}\right) \mathbf{e}_{i}$

$$
\mathbf{v}_{k}=\frac{1}{k} \mathbf{A} \mathbf{v}_{k-1}
$$

Then $\exp \{\mathbf{A}\} \mathbf{e}_{i} \approx \mathbf{v}_{0}+\mathbf{v}_{1}+\cdots+\mathbf{v}_{N-1}+\mathbf{v}_{N}$ (But we want to avoid computing \mathbf{v}_{j} in full...)

Forming a linear system

So we convert the Taylor polynomial into a linear system:

Forming a linear system

So we convert the Taylor polynomial into a linear system:

$$
\left[\begin{array}{ccccc}
\mathbf{l} & & & & \\
-\mathbf{A} / 1 & \mathbf{I} & & & \\
& -\mathbf{A} / 2 & \ddots & & \\
& & \ddots & \mathbf{I} & \\
& & & -\mathbf{A} / N & \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{0} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{e}_{i} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Forming a linear system

So we convert the Taylor polynomial into a linear system:

$$
\left[\begin{array}{ccccc}
\mathbf{l} & & & & \\
-\mathbf{A} / 1 & \mathbf{I} & & & \\
& -\mathbf{A} / 2 & \ddots & & \\
& & \ddots & \mathbf{I} & \\
& & & -\mathbf{A} / N & \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{0} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{e}_{i} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

From
$\mathbf{v}_{k}=\frac{1}{k} \mathbf{A} \mathbf{v}_{k-1}$
$\exp \{\mathbf{A}\} \mathbf{e}_{i} \approx \mathbf{v}_{0}+\mathbf{v}_{1}+\cdots+\mathbf{v}_{N-1}+\mathbf{v}_{N}$ (never formed explicitly)

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving $\mathbf{M x}=\mathbf{b}$ when \mathbf{x} is "effectively sparse" (i.e. a localized vector)

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving $\mathbf{M x}=\mathbf{b}$ when \mathbf{x} is "effectively sparse" (i.e. a localized vector)

1. Set $\mathbf{x}^{0}=0, \mathbf{r}^{0}=\mathbf{b}$, then iterate:

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving $\mathbf{M x}=\mathbf{b}$ when \mathbf{x} is "effectively sparse" (i.e. a localized vector)

1. Set $\mathbf{x}^{0}=0, \mathbf{r}^{0}=\mathbf{b}$, then iterate:
2. At step k, relax largest entry of \mathbf{r}^{k} (denoted r_{i}^{k}), add to \mathbf{x}^{k};

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+r_{i}^{k} \cdot \mathbf{e}_{i}
$$

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving $\mathbf{M x}=\mathbf{b}$ when \mathbf{x} is "effectively sparse" (i.e. a localized vector)

1. Set $\mathbf{x}^{0}=0, \mathbf{r}^{0}=\mathbf{b}$, then iterate:
2. At step k, relax largest entry of \mathbf{r}^{k} (denoted r_{i}^{k}), add to \mathbf{x}^{k};

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+r_{i}^{k} \cdot \mathbf{e}_{i}
$$

3. Add corresponding column of \mathbf{M} to residual:

$$
\mathbf{r}^{k+1}=\left(\mathbf{r}^{k}-r_{i}^{k} \cdot \mathbf{e}_{i}\right)+r_{i}^{k} \cdot \mathbf{M}(:, i)
$$

NEXPOKIT

Apply GS to our linear system, $\mathbf{M} \overline{\mathbf{v}}=\overline{\mathbf{e}}_{i}$:

$$
\left[\begin{array}{ccccc}
\mathbf{l} & & & & \\
-\mathbf{A} / 1 & \mathbf{I} & & & \\
& -\mathbf{A} / 2 & \ddots & & \\
& & \ddots & \mathbf{I} & \\
& & & -\mathbf{A} / N & \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{0} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{e}_{i} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Now residual has index and block section: $r(i, j)$. Iteration reduces to: (1) adding $r(i, j)^{k}$ to a single entry of \mathbf{x}, our approximation; (2) adding scaled column, $\frac{r(i, j)^{k}}{j} \mathbf{A}(:, i)$, to section j of the residual.

Convergence and Implementation

Scaling $\frac{r(i, j)^{k}}{j} \mathbf{A}(:, i)$ guarantees $\left\|\mathbf{r}^{k}\right\|_{1}$ decreases, for column stochastic \mathbf{A} :

Convergence and Implementation

Scaling $\frac{r(i, j)^{k}}{j} \mathbf{A}(:, i)$ guarantees $\left\|\mathbf{r}^{k}\right\|_{1}$ decreases, for column stochastic \mathbf{A} :

$$
\left\|\mathbf{r}^{k+1}\right\|_{1}=\left\|\mathbf{r}^{k}\right\|_{1}-r(i, j)^{k}+\frac{r(i, j)^{k}}{j}=\left\|\mathbf{r}^{k}\right\|_{1}-r(i, j)^{k}\left(1-\frac{1}{j}\right)
$$

Largest entry, $r(i, j)$ is bounded below by average, $r(i, j)>\|\mathbf{r}\|_{1} /(\#$ non zeros in \mathbf{r}).

Convergence and Implementation

Scaling $\frac{r(i, j)^{k}}{j} \mathbf{A}(:, i)$ guarantees $\left\|\mathbf{r}^{k}\right\|_{1}$ decreases, for column stochastic \mathbf{A} :

$$
\left\|\mathbf{r}^{k+1}\right\|_{1}=\left\|\mathbf{r}^{k}\right\|_{1}-r(i, j)^{k}+\frac{r(i, j)^{k}}{j}=\left\|\mathbf{r}^{k}\right\|_{1}-r(i, j)^{k}\left(1-\frac{1}{j}\right)
$$

Largest entry, $r(i, j)$ is bounded below by average, $r(i, j)>\|\mathbf{r}\|_{1} /(\#$ non zeros in \mathbf{r}).
No component of large linear system formed explicitly:

- residual vector stored in a heap (alternative: queue with threshold)
- matrix \mathbf{M} not formed at all
- blocks \mathbf{v}_{j} not stored separately

"A Nearly Sublinear Approximation ...

- Converges for stochastic matrices

■ "Nearly sublinear" - if $d_{\max }=O(\log \log n)$ (unrealistic)

- In practice, sublinear if NNZ $=O(n)$
- Less work than a single mat-vec

"A Nearly Sublinear Approximation ...

- Converges for stochastic matrices

■ "Nearly sublinear" - if $d_{\max }=O(\log \log n)$ (unrealistic)

- In practice, sublinear if NNZ $=O(n)$
- Less work than a single mat-vec
- New: for power-law degree distributed networks, the runtime for an error of ε is

$$
\log (1 / \varepsilon)(1 / \varepsilon)^{3 / 2} d_{\max } \log \left(d_{\max }\right)^{2}
$$

- Social networks tend to have $d_{\max }=O\left(n^{r}\right)$ for $r<1$, so this is sublinear in n.

Power-law degree distribution

[Laboratory for Web Algorithms, http://law.di.unimi.it/index.php]

Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:
■ decrease in $\|\mathbf{r}\|$ depends on largest value in \mathbf{r}, r_{i}
■ lowerbound r_{i} using the average value of \mathbf{r}
■ average value $=\|\mathbf{r}\| /(\#$ of nonzeros in $\mathbf{r})$
(\# of nonzeros in \mathbf{r}) upper bounded by $d_{\max } *$ (\#iterations)

Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:
■ decrease in $\|\mathbf{r}\|$ depends on largest value in \mathbf{r}, r_{i}
■ lowerbound r_{i} using the average value of \mathbf{r}
■ average value $=\|\mathbf{r}\| /(\#$ of nonzeros in $\mathbf{r})$
(\# of nonzeros in \mathbf{r}) upper bounded by $d_{\max } *$ (\#iterations)
Power-law network: \# of nonzeros in \mathbf{r} after t iterations grows like $O(t)$ instead of $d_{\text {max }} * t . \Rightarrow$ average value can't decay too fast. Hence, $\|\mathbf{r}\|$ is guaranteed to decrease "fast enough": $\left\|\mathbf{r}^{t}\right\|<O\left(t^{-2 / 3}\right)$

Runtime v. Graph Size

"GSQ" is a version of our Gauss-Southwell method that stores the residual vector in a queue instead of a heap.

Runtime on larger networks

For ljournal-2008, $n=5,363,260$, ave degree $=14.7$.

Runtime on larger networks

For webbase-2001, $n=118,142,155$, ave degree $=8.6$.

Accuracy of algorithm

For $\mathrm{pgp}-\mathrm{cc} n=10,680$, but this is representative of dataset.

Number of operations performed

Effective matrix-vector products
For dblp-cc, $n=226,413$. Again, this is representative.

Future Work

- Adapt the method to other functions: $\cosh (x), x^{\frac{1}{p}}, \log (x)$.
- Allow for scaling, $f(t \mathbf{A}) \mathbf{e}_{i}$.

■ Allow for $f(\mathbf{A})$ times a vector \mathbf{v} (other than \mathbf{e}_{i}).

- Improve domain of convergence, $\rho(\mathbf{A}) \in(0,1]$.

Code and Further Details

Code available at
http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit
For details and references, see our paper at

$$
\text { http://arxiv.org/abs/1310. } 3423
$$

