A Nearly Sublinear Approximation to exp{P }e;
for Large Sparse Matrices from Social Networks

Kyle Kloster and David F. Gleich
Purdue University

December 14, 2013

Supported by NSF CAREER 1149756-CCF

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 1/22

exp(A)

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 2/22

exp(A)

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?
A} = > A*
exp{A} = ;} P

[(Ak),-j gives the number of length-k walks from j to j, so...

m Large entries of exp{A} denote “important” nodes / links

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

exp(A)

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?

=1
exp{A} = Z ﬂAk
k=0

[(Ak),-j gives the number of length-k walks from j to j, so...
m Large entries of exp{A} denote “important” nodes / links
m exp{A} is common, but other f(A) can be used:

pagerank and heatkernel PR
m Assume column stochastic, P = GD ™! (more on this later)

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

exp(A)

Difficulties with current methods:

Sidje, TOMS 1998; Al-Mohy and Higham, SISC 2011

m Leading methods for exp{A}b use Krylov or Taylor methods:
“basically” repeated mat-vecs

m “Small world” property: graph diameter < 4 = repeated mat-vecs fill
in rapidly (see picture)
m Not designed specifically for sparse networks.

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 3/22

exp(A)

Fill-in from repeated matvecs

0 4] 4] 0
200 200 200 200
400 400 400 400
600 600 600 600
800 800 800 800

1000 1000 1000 1000
nz=5 nz =33 nz =281 nz =868

Vectors PXe; for k = 1,2,3,4. n= 1133

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Local Method

New method: avoid mat-vecs! — use a local method.

Local algorithms run in time proportional to size of output:

sparse solution vector = small runtime

Instead of matvecs, we do specially-selected vector adds using a relaxation
method.

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 5/22

exp(A)

exp{P}e; is a localized vector

0.8
0.6

0.4

0 200 400 600 800 1000 1200

x-axis: vector index, y-axis: magnitude of entry
the column of exp{P} produced by previous slide's matvecs

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Our method

Overview

Outline of Nexpokit method

Express exp{A}e; via a Taylor polynomial
Form large linear system out of Taylor terms

Use sparse solver to approximate each terms’ largest entries

=

Combine approximated terms into a solution

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Our method

In terms of Taylor terms

Taylor polynomial:

exp{A}e; ~ (l +AFIAZ L IAR L ﬁA’V> e;

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 8 /22

Our method

In terms of Taylor terms

Taylor polynomial:
exp{A}e; ~ (l +AFIAZ L IAR L ﬁA’V> e;
1

Compute terms recursively: vy, = %Ake; = %A (mAkA) e/

1
Ve = zAvi g

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 8 /22

Our method

In terms of Taylor terms

Taylor polynomial:
exp{A}e; ~ (I +A+ 1A%+ %AE‘ +- ﬁAN> e
Compute terms recursively: vy, = %Ake; = %A (ﬁAkA) e/

1
Ve = zAvi g

Then exp{A}e; ~ vy +vi+ - +vy_1+ vy
(But we want to avoid computing v; in full...)

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 8 /22

Our method

Forming a linear system

So we convert the Taylor polynomial into a linear system:

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Our method

Forming a linear system

So we convert the Taylor polynomial into a linear system:

|
~A/1

Kyle Kloster (Purdue)

—A/2

" o
Vi1

V2

| .
—A/N I_ | VN

Approximation of exp{P}e;

€

0
0

December 14, 2013

9/

22

Our method

Forming a linear system

So we convert the Taylor polynomial into a linear system:

I Vo €
_A/2 V2 = 0
| : :

i ~A/N 1| Lvw] L[O]

From

Vi = tAvy_4

exp{A}e; ~vo+vi+---+vy_1+vy
(never formed explicitly)

December 14, 2013

Kyle Kloster (Purdue) Approximation of exp{P}e;

Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 10 / 22

Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

1. Set X =0, r® = b, then iterate:

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 10 / 22

Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

1. Set x =0, 9 = b, then iterate:
2. At step k, relax largest entry of r¥ (denoted r,-k), add to x;

XKL = xk ok e

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

1. Set x =0, 9 = b, then iterate:
2. At step k, relax largest entry of r¥ (denoted r,-k), add to x;

XKL = xk ok e

3. Add corresponding column of M to residual:

Pkl = ek —rk o))+ rf M)

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Our method

NEXPOKIT

Apply GS to our linear system, Mv = &;:

[| | Vo €;
—-A/1 | Vi 0
~A/2 - v2 [=] O

| : :

I —A/N 1| LN 0

Now residual has index and block section: r(i,). Iteration reduces to:
(1) adding r(i,j)* to a single entry of x, our approximation;

(2) adding scaled column, r(ij—%j)kA(:, i), to section j of the residual.

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 11 /22

Our method

Convergence and Implementation

Scalin r("J) A(:, i) guarantees ||r¥||; decreases, for column stochastic A:
g 1) 8

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 12 / 22

Our method

Convergence and Implementation

Scalin r("J) A(:, i) guarantees ||r¥||; decreases, for column stochastic A:
g 1) 8

. . i)k . .
I = el =)+ S = e = () (=)

Largest entry, r(/,j) is bounded below by average, r(i,;) > ||¢||1/(# non
zeros in r).

Kyle Kloster (Purdue)

Approximation of exp{P}e; December 14, 2013 12 / 22

Our method

Convergence and Implementation

Scalin r("J) A(:, i) guarantees ||r¥||; decreases, for column stochastic A:
g 1) 8

. . i)k . .
I = el =)+ S = e = () (=)

Largest entry, r(/,j) is bounded below by average, r(i,;) > ||¢||1/(# non
zeros in r).

No component of large linear system formed explicitly:

- residual vector stored in a heap (alternative: queue with threshold)
- matrix M not formed at all

- blocks v; not stored separately

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 12 / 22

Analysis

“A Nearly Sublinear Approximation ... "

Converges for stochastic matrices
“Nearly sublinear” — if dmax = O(loglogn) (unrealistic)
In practice, sublinear if NNZ = O(n)

Less work than a single mat-vec

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 13/

Analysis

“A Nearly Sublinear Approximation ... "

Converges for stochastic matrices

“Nearly sublinear” — if dmax = O(loglogn) (unrealistic)
In practice, sublinear if NNZ = O(n)

Less work than a single mat-vec

New: for power-law degree distributed networks, the runtime for an
error of ¢ is
log (1/¢) (1/2)*/? dmaxlog(dmax)?

m Social networks tend to have dmax = O(n") for r < 1, so this is
sublinear in n.

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 13 / 22

Analysis

Power-law degree distribution

let07

le+06

100000

10000

1000

frequency

100

10

0 9 99 999 9999
outdegree

[Laboratory for Web Algorithms, http://law.di.unimi.it/index.php]

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 14 / 22

Analysis

Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:
m decrease in ||r|| depends on largest value inr, r;
m lowerbound r; using the average value of r
m average value = ||r||/(# of nonzeros in r)

(# of nonzeros in r) upper bounded by dmax * (#iterations)

December 14, 2013

Kyle Kloster (Purdue) Approximation of exp{P}e;

Analysis

Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:
m decrease in ||r|| depends on largest value inr, r;
m lowerbound r; using the average value of r
m average value = ||r||/(# of nonzeros in r)

(# of nonzeros in r) upper bounded by dmax * (#iterations)

Power-law network: # of nonzeros in r after t iterations grows like O(t)
instead of dmax * t. = average value can't decay too fast. Hence, ||r|| is
guaranteed to decrease "fast enough”: |rt|| < O(t=%/3)

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 15 / 22

Results and Future Work

Runtime v. Graph Size

Wl
‘B
. 100 L7
R
Q
o
o 0.01
£
< —e—GSQ
T —-0— EXPV
1e-4 O MEXPV |-
- + -TAYLOR
10° 10° 10° 10°

[El+ V]

“GSQ" is a version of our Gauss-Southwell method that stores the residual
vector in a queue instead of a heap.

Kyle Kloster (Purdue)

Approximation of exp{P}e;

December 14, 2013 16 / 22

Results and Future Work

Runtime on larger networks

0 10 20 30
Trial

For 1journal-2008, n = 5,363,260, ave degree = 14.7.

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Results and Future Work

Runtime on larger networks

140
——— EXMPV
120 —— GSQ
—GS
100
§ 80
[0]
€ 60
|_
40
20
0
0 10 20 30

Trial

For webbase-2001, n = 118, 142,155, ave degree = 8.6.

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Results and Future Work

Accuracy of algorithm

pgp-cc

1 - + + T
2]
<}
c 0.8 +
o + +
=) +
o 0.6 +
=] + +
§0.4 o+ +
% | :t
2 +
202 1 I #
o 1

0

-2 -3 -4 -5 -6 -7
log_10 of 1-norm of residual

For pgp-cc n = 10,680, but this is representative of dataset.

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Results and Future Work

Number of operations performed

c
° ’ 11 1l
§ 7 3 5
= *
a 04 , - @10
/
02} x -- @25
, 4+ @100
0 “% - @1000
10° 100 10°

Effective matrix—vector products

For dblp-cc, n = 226,413. Again, this is representative.

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Results and Future Work

Future Work

1
Adapt the method to other functions: cosh(x), x#, log(x).
Allow for scaling, f(tA)e;.

Allow for f(A) times a vector v (other than ;).

Improve domain of convergence, p(A) € (0, 1].

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013

Results and Future Work

Code and Further Details

Code available at
http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit
For details and references, see our paper at

http://arxiv.org/abs/1310.3423

Kyle Kloster (Purdue) Approximation of exp{P}e; December 14, 2013 22/

	exp(A)
	Our method
	Analysis
	Results and Future Work

