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exp(A)

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?
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exp(A)

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?
A} = > A*
exp{A} = ;} P

[ (Ak),-j gives the number of length-k walks from j to j, so...

m Large entries of exp{A} denote “important” nodes / links
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exp(A)

Columns of the Matrix Exponential

exp{ A } used for link-prediction, node centrality, and clustering. Why?

=1
exp{A} = Z ﬂAk
k=0

[ (Ak),-j gives the number of length-k walks from j to j, so...
m Large entries of exp{A} denote “important” nodes / links
m exp{A} is common, but other f(A) can be used:

pagerank and heatkernel PR
m Assume column stochastic, P = GD ™! (more on this later)
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exp(A)

Difficulties with current methods:

Sidje, TOMS 1998; Al-Mohy and Higham, SISC 2011

m Leading methods for exp{A}b use Krylov or Taylor methods:
“basically” repeated mat-vecs

m “Small world” property: graph diameter < 4 = repeated mat-vecs fill
in rapidly (see picture)
m Not designed specifically for sparse networks.
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exp(A)

Fill-in from repeated matvecs
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Vectors PXe; for k = 1,2,3,4. n= 1133
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Local Method

New method: avoid mat-vecs! — use a local method.

Local algorithms run in time proportional to size of output:

sparse solution vector = small runtime

Instead of matvecs, we do specially-selected vector adds using a relaxation
method.
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exp(A)

exp{P}e; is a localized vector
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x-axis: vector index, y-axis: magnitude of entry
the column of exp{P} produced by previous slide's matvecs
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Our method

Overview

Outline of Nexpokit method

Express exp{A}e; via a Taylor polynomial
Form large linear system out of Taylor terms

Use sparse solver to approximate each terms’ largest entries

=

Combine approximated terms into a solution
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Our method

In terms of Taylor terms

Taylor polynomial:

exp{A}e; ~ (l +AFIAZ L IAR L ﬁA’V> e;
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Our method

In terms of Taylor terms

Taylor polynomial:
exp{A}e; ~ (l +AFIAZ L IAR L ﬁA’V> e;
1

Compute terms recursively: vy, = %Ake; = %A (mAkA) e/

1
Ve = zAvi g
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Our method

In terms of Taylor terms

Taylor polynomial:
exp{A}e; ~ (I +A+ 1A%+ %AE‘ +- ﬁAN> e
Compute terms recursively: vy, = %Ake; = %A (ﬁAkA) e/

1
Ve = zAvi g

Then exp{A}e; ~ vy +vi+ - +vy_1+ vy
(But we want to avoid computing v; in full...)
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Our method

Forming a linear system

So we convert the Taylor polynomial into a linear system:
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Our method

Forming a linear system

So we convert the Taylor polynomial into a linear system:

|
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Our method

Forming a linear system

So we convert the Taylor polynomial into a linear system:

I Vo €
_A/2 V2 = 0
| : :

i ~A/N 1| Lvw ] L[O]

From

Vi = tAvy_4

exp{A}e; ~vo+vi+---+vy_1+vy
(never formed explicitly)

December 14, 2013
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Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)
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Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

1. Set X =0, r® = b, then iterate:
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Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

1. Set x =0, 9 = b, then iterate:
2. At step k, relax largest entry of r¥ (denoted r,-k), add to x;

XKL = xk ok e
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Our method

Sparse solver: Gauss Southwell

Basic idea of Gauss Southwell (GS): solving Mx = b when x is “effectively
sparse” (i.e. a localized vector)

1. Set x =0, 9 = b, then iterate:
2. At step k, relax largest entry of r¥ (denoted r,-k), add to x;

XKL = xk ok e

3. Add corresponding column of M to residual:

Pkl = ek —rk o))+ rf M)
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Our method

NEXPOKIT

Apply GS to our linear system, Mv = &;:

[ | | Vo €;
—-A/1 | Vi 0
~A/2 - v2 [ =] O

| : :

I —A/N 1| LN 0

Now residual has index and block section: r(i, ). Iteration reduces to:
(1) adding r(i,j)* to a single entry of x, our approximation;

(2) adding scaled column, r(ij—%j)kA(:, i), to section j of the residual.
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Our method

Convergence and Implementation

Scalin r("J) A(:, i) guarantees ||r¥||; decreases, for column stochastic A:
g 1) 8
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Our method

Convergence and Implementation

Scalin r("J) A(:, i) guarantees ||r¥||; decreases, for column stochastic A:
g 1) 8

. . i)k . .
I = el = )+ S = e = () (= )

Largest entry, r(/,j) is bounded below by average, r(i,;) > ||¢||1/(# non
zeros in r).
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Our method

Convergence and Implementation

Scalin r("J) A(:, i) guarantees ||r¥||; decreases, for column stochastic A:
g 1) 8

. . i)k . .
I = el = )+ S = e = () (= )

Largest entry, r(/,j) is bounded below by average, r(i,;) > ||¢||1/(# non
zeros in r).

No component of large linear system formed explicitly:

- residual vector stored in a heap (alternative: queue with threshold)
- matrix M not formed at all

- blocks v; not stored separately
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Analysis

“A Nearly Sublinear Approximation ... "

Converges for stochastic matrices
“Nearly sublinear” — if dmax = O(loglogn) (unrealistic)
In practice, sublinear if NNZ = O(n)

Less work than a single mat-vec
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Analysis

“A Nearly Sublinear Approximation ... "

Converges for stochastic matrices

“Nearly sublinear” — if dmax = O(loglogn) (unrealistic)
In practice, sublinear if NNZ = O(n)

Less work than a single mat-vec

New: for power-law degree distributed networks, the runtime for an
error of ¢ is
log (1/¢) (1/2)*/? dmaxlog(dmax)?

m Social networks tend to have dmax = O(n") for r < 1, so this is
sublinear in n.
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Analysis

Power-law degree distribution
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[Laboratory for Web Algorithms, http://law.di.unimi.it/index.php]
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Analysis

Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:
m decrease in ||r|| depends on largest value inr, r;
m lowerbound r; using the average value of r
m average value = ||r||/(# of nonzeros in r)

(# of nonzeros in r) upper bounded by dmax * (#iterations)

December 14, 2013
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Analysis

Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:
m decrease in ||r|| depends on largest value inr, r;
m lowerbound r; using the average value of r
m average value = ||r||/(# of nonzeros in r)

(# of nonzeros in r) upper bounded by dmax * (#iterations)

Power-law network: # of nonzeros in r after t iterations grows like O(t)
instead of dmax * t. = average value can't decay too fast. Hence, ||r|| is
guaranteed to decrease "fast enough”: |rt|| < O(t=%/3)
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Results and Future Work

Runtime v. Graph Size
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“GSQ" is a version of our Gauss-Southwell method that stores the residual
vector in a queue instead of a heap.
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Results and Future Work

Runtime on larger networks

0 10 20 30
Trial

For 1journal-2008, n = 5,363,260, ave degree = 14.7.
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Results and Future Work

Runtime on larger networks

140
——— EXMPV
120 —— GSQ
—GS
100
§ 80
[0]
€ 60
|_
40
20
0
0 10 20 30

Trial

For webbase-2001, n = 118, 142,155, ave degree = 8.6.
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Results and Future Work

Accuracy of algorithm

pgp-cc
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For pgp-cc n = 10,680, but this is representative of dataset.
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Results and Future Work

Number of operations performed
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Effective matrix—vector products

For dblp-cc, n = 226,413. Again, this is representative.
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Results and Future Work

Future Work

1
Adapt the method to other functions: cosh(x), x#, log(x).
Allow for scaling, f(tA)e;.

Allow for f(A) times a vector v (other than ;).

Improve domain of convergence, p(A) € (0, 1].
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Results and Future Work

Code and Further Details

Code available at
http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit
For details and references, see our paper at

http://arxiv.org/abs/1310.3423
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