## A Nearly Sublinear Approximation to $\exp{\{\mathbf{P}\}}\mathbf{e}_i$ for Large Sparse Matrices from Social Networks

#### Kyle Kloster and David F. Gleich

Purdue University

December 14, 2013

Supported by NSF CAREER 1149756-CCF

### Columns of the Matrix Exponential

 $exp\{\ \textbf{A}\ \}$  used for link-prediction, node centrality, and clustering. Why?

### Columns of the Matrix Exponential

 $exp{A}$  used for link-prediction, node centrality, and clustering. Why?

$$\exp\{\mathbf{A}\} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k$$

(A<sup>k</sup>)<sub>ij</sub> gives the number of length-k walks from i to j, so...
Large entries of exp{A} denote "important" nodes / links

### Columns of the Matrix Exponential

 $exp{A}$  used for link-prediction, node centrality, and clustering. Why?

$$\exp\{\mathbf{A}\} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k$$

- $(\mathbf{A}^k)_{ij}$  gives the number of length-k walks from i to j, so...
- Large entries of exp{A} denote "important" nodes / links
- exp{A} is common, but other f(A) can be used: pagerank and heatkernel PR
- Assume column stochastic,  $\mathbf{P} = \mathbf{G}\mathbf{D}^{-1}$  (more on this later)

## Difficulties with current methods: Sidje, TOMS 1998; Al-Mohy and Higham, SISC 2011

- Leading methods for exp{A}b use Krylov or Taylor methods: "basically" repeated mat-vecs
- "Small world" property: graph diameter ≤ 4 ⇒ repeated mat-vecs fill in rapidly (see picture)
- Not designed specifically for sparse networks.

exp(A)

### Fill-in from repeated matvecs



Vectors  $\mathbf{P}^{k}\mathbf{e}_{i}$  for k = 1, 2, 3, 4. n = 1133

Kyle Kloster (Purdue)

New method: avoid mat-vecs!  $\rightarrow$  use a **local** method.

Local algorithms run in time proportional to size of output:

sparse solution vector = small runtime

Instead of matvecs, we do specially-selected vector adds using a relaxation method.

exp(A)

### $\exp{\{\mathbf{P}\}\mathbf{e}_i}$ is a localized vector



x-axis: vector index, y-axis: magnitude of entry the column of exp{  ${\bf P} \}$  produced by previous slide's matvecs

Kyle Kloster (Purdue)

Approximation of  $exp\{P\}e_i$ 

December 14, 2013 6 / 22

### Overview

Outline of Nexpokit method

- 1. Express  $\exp{\{\mathbf{A}\}\mathbf{e}_i}$  via a Taylor polynomial
- 2. Form large linear system out of Taylor terms
- 3. Use sparse solver to approximate each terms' largest entries
- 4. Combine approximated terms into a solution

### In terms of Taylor terms

Taylor polynomial:

$$\exp\{\mathbf{A}\}\mathbf{e}_i \approx \left(\mathbf{I} + \mathbf{A} + \frac{1}{2}\mathbf{A}^2 + \frac{1}{3!}\mathbf{A}^3 + \dots + \frac{1}{N!}\mathbf{A}^N\right)\mathbf{e}_i$$

### In terms of Taylor terms

Taylor polynomial:

$$\exp\{\mathbf{A}\}\mathbf{e}_{i} \approx \left(\mathbf{I} + \mathbf{A} + \frac{1}{2}\mathbf{A}^{2} + \frac{1}{3!}\mathbf{A}^{3} + \dots + \frac{1}{N!}\mathbf{A}^{N}\right)\mathbf{e}_{i}$$
  
Compute terms recursively:  $\mathbf{v}_{k} = \frac{1}{k!}\mathbf{A}^{k}\mathbf{e}_{i} = \frac{1}{k}\mathbf{A}\left(\frac{1}{(k-1)!}\mathbf{A}^{k-1}\right)\mathbf{e}_{i}$ 

$$\mathbf{v}_k = \frac{1}{k} \mathbf{A} \mathbf{v}_{k-1}$$

### In terms of Taylor terms

Taylor polynomial:

$$\exp\{\mathbf{A}\}\mathbf{e}_i \approx \left(\mathbf{I} + \mathbf{A} + \frac{1}{2}\mathbf{A}^2 + \frac{1}{3!}\mathbf{A}^3 + \dots + \frac{1}{N!}\mathbf{A}^N\right)\mathbf{e}_i$$

Compute terms recursively:  $\mathbf{v}_k = \frac{1}{k!} \mathbf{A}^k \mathbf{e}_i = \frac{1}{k} \mathbf{A} \left( \frac{1}{(k-1)!} \mathbf{A}^{k-1} \right) \mathbf{e}_i$ 

$$\mathbf{v}_k = \frac{1}{k} \mathbf{A} \mathbf{v}_{k-1}$$

Then  $\exp{\{\mathbf{A}\}}\mathbf{e}_i \approx \mathbf{v}_0 + \mathbf{v}_1 + \cdots + \mathbf{v}_{N-1} + \mathbf{v}_N$ (But we want to avoid computing  $\mathbf{v}_i$  in full...)

### Forming a linear system

So we convert the Taylor polynomial into a linear system:

### Forming a linear system

So we convert the Taylor polynomial into a linear system:

$$\begin{bmatrix} \mathbf{I} & & & \\ -\mathbf{A}/1 & \mathbf{I} & & \\ & -\mathbf{A}/2 & \ddots & \\ & & \ddots & \mathbf{I} \\ & & -\mathbf{A}/N & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_N \end{bmatrix} = \begin{bmatrix} \mathbf{e}_i \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

### Forming a linear system

So we convert the Taylor polynomial into a linear system:

$$\begin{bmatrix} \mathbf{I} & & & & \\ -\mathbf{A}/1 & \mathbf{I} & & & \\ & -\mathbf{A}/2 & \ddots & & \\ & & \ddots & \mathbf{I} \\ & & & -\mathbf{A}/N & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_N \end{bmatrix} = \begin{bmatrix} \mathbf{e}_i \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

#### From

$$\begin{aligned} \mathbf{v}_{k} &= \frac{1}{k} \mathbf{A} \mathbf{v}_{k-1} \\ \exp{\{\mathbf{A}\}} \mathbf{e}_{i} &\approx \mathbf{v}_{0} + \mathbf{v}_{1} + \dots + \mathbf{v}_{N-1} + \mathbf{v}_{N} \\ \text{(never formed explicitly)} \end{aligned}$$

Basic idea of Gauss Southwell (GS): solving Mx = b when x is "effectively sparse" (i.e. a localized vector)

Basic idea of Gauss Southwell (GS): solving Mx = b when x is "effectively sparse" (i.e. a localized vector)

1. Set  $\mathbf{x}^0 = 0$ ,  $\mathbf{r}^0 = \mathbf{b}$ , then iterate:

Basic idea of Gauss Southwell (GS): solving Mx = b when x is "effectively sparse" (i.e. a localized vector)

- 1. Set  $\mathbf{x}^0 = 0$ ,  $\mathbf{r}^0 = \mathbf{b}$ , then iterate:
- 2. At step k, relax largest entry of  $\mathbf{r}^k$  (denoted  $r_i^k$ ), add to  $\mathbf{x}^k$ ;

$$\mathbf{x}^{k+1} = \mathbf{x}^k + r_i^k \cdot \mathbf{e}_i$$

Basic idea of Gauss Southwell (GS): solving Mx = b when x is "effectively sparse" (i.e. a localized vector)

- 1. Set  $\mathbf{x}^0 = 0$ ,  $\mathbf{r}^0 = \mathbf{b}$ , then iterate:
- 2. At step k, relax largest entry of  $\mathbf{r}^k$  (denoted  $r_i^k$ ), add to  $\mathbf{x}^k$ ;

$$\mathbf{x}^{k+1} = \mathbf{x}^k + r_i^k \cdot \mathbf{e}_i$$

3. Add corresponding column of **M** to residual:

$$\mathbf{r}^{k+1} = (\mathbf{r}^k - r_i^k \cdot \mathbf{e}_i) + r_i^k \cdot \mathbf{M}(:, i)$$

#### NEXPOKIT

Apply GS to our linear system,  $\mathbf{M}\mathbf{\bar{v}} = \mathbf{\bar{e}}_i$ :

$$\begin{bmatrix} \mathbf{I} & & & \\ -\mathbf{A}/1 & \mathbf{I} & & \\ & -\mathbf{A}/2 & \ddots & \\ & & \ddots & \mathbf{I} \\ & & & -\mathbf{A}/N & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_N \end{bmatrix} = \begin{bmatrix} \mathbf{e}_i \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Now residual has index and block section: r(i, j). Iteration reduces to: (1) adding  $r(i, j)^k$  to a single entry of **x**, our approximation; (2) adding scaled column,  $\frac{r(i, j)^k}{i} \mathbf{A}(:, i)$ , to section j of the residual.

### Convergence and Implementation

# Scaling $\frac{r(i,j)^k}{j} \mathbf{A}(:,i)$ guarantees $\|\mathbf{r}^k\|_1$ decreases, for column stochastic $\mathbf{A}$ :

### Convergence and Implementation

Scaling  $\frac{r(i,j)^k}{j} \mathbf{A}(:,i)$  guarantees  $\|\mathbf{r}^k\|_1$  decreases, for column stochastic  $\mathbf{A}$ :

$$\|\mathbf{r}^{k+1}\|_1 = \|\mathbf{r}^k\|_1 - r(i,j)^k + \frac{r(i,j)^k}{j} = \|\mathbf{r}^k\|_1 - r(i,j)^k (1 - \frac{1}{j})$$

Largest entry, r(i,j) is bounded below by average,  $r(i,j) > ||\mathbf{r}||_1/(\# \text{ non zeros in } \mathbf{r})$ .

### Convergence and Implementation

Scaling  $\frac{r(i,j)^k}{j} \mathbf{A}(:,i)$  guarantees  $\|\mathbf{r}^k\|_1$  decreases, for column stochastic **A**:

$$\|\mathbf{r}^{k+1}\|_1 = \|\mathbf{r}^k\|_1 - r(i,j)^k + \frac{r(i,j)^k}{j} = \|\mathbf{r}^k\|_1 - r(i,j)^k (1 - \frac{1}{j})$$

Largest entry, r(i,j) is bounded below by average,  $r(i,j) > ||\mathbf{r}||_1/(\# \text{ non zeros in } \mathbf{r})$ .

No component of large linear system formed explicitly:

- residual vector stored in a heap (alternative: queue with threshold)
- matrix **M** not formed at all
- blocks  $\mathbf{v}_j$  not stored separately

### "A Nearly Sublinear Approximation ...

- Converges for stochastic matrices
- "Nearly sublinear" if d<sub>max</sub> = O(loglog n) (unrealistic)
- In practice, sublinear if NNZ = O(n)
- Less work than a single mat-vec

11

### "A Nearly Sublinear Approximation ...

- Converges for stochastic matrices
- "Nearly sublinear" if *d*<sub>max</sub> = *O*(loglog*n*) (unrealistic)
- In practice, sublinear if NNZ = O(n)
- Less work than a single mat-vec
- $\blacksquare$  New: for power-law degree distributed networks, the runtime for an error of  $\varepsilon$  is

$$\log\left(1/\varepsilon\right)\left(1/\varepsilon\right)^{3/2}d_{\max}\log(d_{\max})^2$$

Social networks tend to have  $d_{\max} = O(n^r)$  for r < 1, so this is sublinear in n.

Analysis

### Power-law degree distribution



[Laboratory for Web Algorithms, http://law.di.unimi.it/index.php]

Kyle Kloster (Purdue)

### Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:

- decrease in  $\|\mathbf{r}\|$  depends on largest value in  $\mathbf{r}$ ,  $r_i$
- lowerbound  $r_i$  using the average value of **r**
- average value =  $\|\mathbf{r}\|/(\# \text{ of nonzeros in } \mathbf{r})$
- (# of nonzeros in **r**) upper bounded by  $d_{max} * (\#iterations)$

### Intuition for Proof

Our sublinear runtime proof depends on the degree distribution:

- decrease in  $\|\mathbf{r}\|$  depends on largest value in  $\mathbf{r}$ ,  $r_i$
- lowerbound  $r_i$  using the average value of **r**
- average value =  $\|\mathbf{r}\|/(\# \text{ of nonzeros in } \mathbf{r})$
- (# of nonzeros in **r**) upper bounded by  $d_{max} * (\#iterations)$

Power-law network: # of nonzeros in **r** after *t* iterations grows like O(t) instead of  $d_{\max} * t$ .  $\Rightarrow$  average value can't decay too fast. Hence,  $\|\mathbf{r}\|$  is guaranteed to decrease "fast enough":  $\|\mathbf{r}^t\| < O(t^{-2/3})$ 

### Runtime v. Graph Size



"GSQ" is a version of our Gauss-Southwell method that stores the residual vector in a queue instead of a heap.

### Runtime on larger networks



For ljournal-2008, n = 5,363,260, ave degree = 14.7.

Kyle Kloster (Purdue)

### Runtime on larger networks



For webbase-2001, n = 118, 142, 155, ave degree = 8.6.

Kyle Kloster (Purdue)

Approximation of  $\exp{\{\mathbf{P}\}\mathbf{e}_i}$ 

### Accuracy of algorithm



For pgp-cc n = 10,680, but this is representative of dataset.

### Number of operations performed



For dblp-cc, n = 226, 413. Again, this is representative.

Approximation of exp{P}e;

### Future Work

- Adapt the method to other functions:  $\cosh(x), x^{\frac{1}{p}}, \log(x)$ .
- Allow for scaling,  $f(t\mathbf{A})\mathbf{e}_i$ .
- Allow for  $f(\mathbf{A})$  times a vector  $\mathbf{v}$  (other than  $\mathbf{e}_i$ ).
- Improve domain of convergence,  $\rho(\mathbf{A}) \in (0, 1]$ .

### Code and Further Details

Code available at

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit

For details and references, see our paper at

http://arxiv.org/abs/1310.3423