Strong localization in seeded PageRank vectors

https://github.com/nassarhuda/pprlocal

David F. Gleich
Computer Science

Huda Nassar
Computer Science

Kyle Kloster
Mathematics

Localization in seeded PageRank

An example on a bigger graph

Crawl of flickr from 2006: ~800K nodes, 6M edges, seeded PageRank with $\alpha=0.5$

X-axis: node index
Y-axis: value at that index in true PageRank vector

Localization in seeded PageRank

Given a seed and a graph

$$
\begin{array}{c}\uparrow \\ \mathbf{e}_{s}\end{array} \quad \boldsymbol{P}=\boldsymbol{A}^{T} \boldsymbol{D}^{-1}
$$

What can we say about localization in the seeded PageRank vector with parameter α ?

$$
(\boldsymbol{I}-\alpha \boldsymbol{P}) \mathbf{x}=(1-\alpha) \mathbf{e}_{s}
$$

THEOREM We show that if the graph has a type of skewed degree dist. then the solution \mathbf{x} cannot have many big entries.
(Previously this was known only for const. degree or very slowly growing.)

Types of localization

Strong localization

When is strong localization possible?

Strong localization can be impossible

Values in the PageRank vector seeded on the center node.
Essentially everything is needed to be non-zero to get a global error bound.

Strong localization can be impossible

Consider a star graph

If we round k entries to zero,
1 -norm error is $k \cdot \frac{\alpha}{(1+\alpha)(n-1)}$

so...
this: $\quad\left\|\mathbf{X}-\mathbf{X}^{*}\right\|_{1} \leq \varepsilon$
requires

$$
\frac{(1+\alpha) \varepsilon}{\alpha} \cdot(n-1) \leq k
$$

Values in the PageRank vector seeded on the center node. Essentially everything is needed to be non-zero to get a global error bound.

Strong localization can be impossible

Seeded PageRank is also non-local on any complete bipartite graphs (generalizing star graphs).

Why?
Fact: \boldsymbol{P} is complete-bipartite iff eigenvalues $=\{-1,0,1\}$.
PageRank is really a matrix function, $f(x)=(1-\alpha x)^{-1}$.

Strong localization can be impossible

Seeded PageRank is also non-local on any complete bipartite graphs (generalizing star graphs).

Why?
Fact: \boldsymbol{P} is complete-bipartite iff eigenvalues $=\{-1,0,1\}$.
PageRank is really a matrix function, $f(x)=(1-\alpha x)^{-1}$.
Fact: a matrix function is equiv to interpolating polynomial

$$
p\left(\lambda_{i}\right)=f\left(\lambda_{i}\right) \rightarrow p(\boldsymbol{P})=f(\boldsymbol{P})
$$

Only 3 eigenvalues $\rightarrow p(x)$ is degree 2 (!)

$$
(\boldsymbol{I}-\alpha \boldsymbol{P})^{-1} \mathbf{e}_{j}=f(\boldsymbol{P}) \mathbf{e}_{j}=\left(c_{0} \boldsymbol{I}+c_{1} \boldsymbol{P}+c_{2} \boldsymbol{P}^{2}\right) \mathbf{e}_{j}
$$

When is localization possible?

Graphs exist where seeded PageRank has no local behavior (star graphs)
\& graphs exist with local behavior everywhere
(degree <= constant, or log log(n))

So what properties can determine localization in seeded PageRank?

Skewed degree distributions

The k-th largest degree $d(k) \leq \max \left(d k^{-p}, \delta\right)$

(δ is min degree,
p is decay exponent)
log log plot of the degree sequence for a synthetic example with

10,000 nodes
$d=100$ (max degree)
$\delta=2 \quad$ (min degree)
$\mathrm{p}=0.5$ (decay exponent)
Distinct model from
Pareto power law!

Strong localization in personalized PageRank Vectors

Theorem (Nassar, K., Gleich):
Let d be the max-degree, δ be the min-degree,
n be the number of nodes, p be the decay exponent.
Then the number of non-zeros N needed for $\left\|\mathbf{x}-\mathbf{x}_{\varepsilon}\right\|_{1} \leq \varepsilon$
satisfies $N \leq \min \left\{n, \frac{1}{\delta} C_{p}(1 / \varepsilon)^{\frac{\delta}{1-\alpha}}\right\}$

$$
C_{p}= \begin{cases}d(1+\log d) & p=1 \\ d\left(1+\frac{1}{1-p}\left(d^{(1 / p)-1}-1\right)\right) & \text { otherwise }\end{cases}
$$

Due to the maximum degree d, this does not say anything about traditional power-law graphs (e.g. the Pareto case)

Strong localization in personalized PageRank Vectors (sketch)

We study the behavior of the Gauss-Southwell or push algorithm for computing PageRank

- residual = remaining rank/dye to assign
- solution = assigned rank/dye

Algorithm

1. pick node with most residual dye
2. assign dye to node
3. update residual dye on neighbors,
4. then repeat.

Strong localization in personalized PageRank Vectors (sketch)

Define the residual vector \mathbf{r}, $\mathbf{r}=(1-\alpha) \mathbf{e}_{s}-(1-\alpha \boldsymbol{P}) \hat{\mathbf{x}}$. Then $\|\mathbf{x}-\hat{\mathbf{x}}\|_{1}<\varepsilon$ is implied by $\|r\|_{1}<\varepsilon(1-\alpha)$

After k steps, $\left\|\mathbf{r}_{k}\right\|_{1} \leq\left\|\mathbf{r}_{0}\right\|_{1} \prod_{t=0}^{k}\left(1-\frac{1-\alpha}{Z(t)}\right)$, where $Z(t)$ denotes the number of non-zero entries in \mathbf{r}_{t}.

To guarantee $\left\|\mathbf{r}_{k}\right\|_{1}<\varepsilon(1-\alpha)$, it suffices to choose k so that, $\left(\left(\delta k+C_{p}\right) / C_{p}\right)(\alpha-1) / \delta \leq \varepsilon$

The hard part is bounding $Z(t)$
we show $Z(t) \leq C_{p}+\delta t$

(The proof builds on techniques from [Gleich, K., Internet Math 2014])

Asymptotic theory prediction

y-axis $=$ number of non-zeros in approximate solution x-axis $=1 / \varepsilon$
red dashed line vector contains all non-zeros black line bound on non-zeros predicted by theorem

Asymptotic theory prediction

red dashed line vector contains all non-zeros black line bound on non-zeros predicted by theorem blue line actual number of non-zeros in approximation

Asymptotic theory prediction

red dashed line vector contains all non-zeros black line bound on non-zeros predicted by theorem blue line actual number of non-zeros in approximation

: \rightarrow Need a better bound

Empirical scaling guides a new bound.

At left, $p=0.95$, black, green, blue, red, represent $\alpha=\{0.25,0.3,0.5,0.65,0.85\}$

At right, $\alpha=0.5$ and dashed blue, black and green represent $p=\{0.5,0.75,0.95\}$

Empirical scaling guides a new bound.

We conjecture (bound')

$$
\mathrm{nnz}\left(\mathbf{x}_{\varepsilon}\right) \leq d \log (d) \frac{0.2}{1-\alpha}\left(\frac{1}{\varepsilon}\right)^{\left(1 / 4 p^{2}\right)}
$$

Bound' accurately predicts localization

Conclusion and future work

- Examine broader classes of graphs empirically (like real-world networks)
- Improve the localization theory to apply to a wider range of degree distributions
- Explore other graphs without localization - more specifically, relationship between diameter and localization
- Get a theorem for the Pareto power-law case!

