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Localization in seeded PageRank


Inject dye 
here


Newman’s 
netscience graph


379 vertices

924 edges


 x is “zero” on most of the nodes




An example on a bigger graph

Crawl of flickr from 2006: ~800K nodes, 6M edges,"
seeded PageRank with     = 0.5


An example on a bigger graph

Crawl of flickr from 2006 ~800k nodes, 6M edges, alpha=1/2
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X-axis: node index

Y-axis: value at that index in true PageRank vector




Given a seed and a graph



What can we say about 
localization in the seeded 
PageRank vector with 
parameter     ?




es P = AT D�1

↵

(� � ↵P)x = (1 � ↵)es

THEOREM We show that if the graph has a type of skewed 
degree dist. then the solution x cannot have many big entries.


(Previously this was known only for const. degree or very slowly growing.)


Localization in seeded PageRank




Types of localization


kx � x

⇤k1  "

kD

�1(x � x

⇤)k1  "

Strong (uniform)!

Weak (entry-wise)!

Andersen, Chung, and Lang proved that 
the PageRank vector is weakly localized 
in the famous 2006 “push” paper.




Strong localization

When is strong localization possible?


Consider graphs with very 
slowly growing degree or a 
constant degree.



An easy corollary of our 
subsequent theory. Also 
known from functions of 
sparse-matrix literature.



Handles cases like the 
Erdős-Réyni graphs and grid 
graphs.


seed here




Strong localization can be impossible

Consider a star graph


Values in the PageRank vector 
seeded on the center node.

Essentially everything is needed 
to be non-zero to get a global 
error bound.




1
1 + ↵

↵

(1 + ↵)(n � 1)



Strong localization can be impossible

Consider a star graph



If we round k entries to zero,

1-norm error is     

so…"
"
this:"
"
requires


Values in the PageRank vector 
seeded on the center node.

Essentially everything is needed 
to be non-zero to get a global 
error bound.




kx � x

⇤k1  "

1
1 + ↵

↵

(1 + ↵)(n � 1)
k · ↵

(1 + ↵)(n � 1)

(1 + ↵)"
↵

· (n � 1)  k



Strong localization can be impossible

Seeded PageRank is also non-local on"
any complete bipartite graphs (generalizing star graphs)."
"
Why?"
Fact: P is complete-bipartite iff eigenvalues = {-1,0,1}.

PageRank is really a matrix function, 
f (x) = (1 � ↵x)�1.



Strong localization can be impossible

Seeded PageRank is also non-local on"
any complete bipartite graphs (generalizing star graphs)."
"
Why?"
Fact: P is complete-bipartite iff eigenvalues = {-1,0,1}.

PageRank is really a matrix function, 

Fact: a matrix function is equiv to interpolating polynomial"
"
"
Only 3 eigenvalues      p(x) is degree 2  (!)


f (x) = (1 � ↵x)�1.

p(�i ) = f (�i ) ! p(P) = f (P)

(� � ↵P)�1ej = f (P)ej = (c0� + c1P + c2P2)ej



When is localization possible?

Graphs exist where"
seeded PageRank has"
no local behavior (star graphs)

& graphs exist with"

local behavior everywhere"
( degree <= constant, or log log(n) )

"
So what properties can

determine localization

in seeded PageRank?




Skewed degree distributions

The k-th largest degree 


log log plot of the degree 

sequence for a synthetic

example with



10,000 nodes

d = 100  (max degree)"
   = 2      (min degree)"
p = 0.5   (decay exponent)


100 102 104
100

101

102

node id, k

de
gr

ee
(k

)

d(k )  max(dk�p
, �)

(     is min degree,

  p  is decay exponent )

�

�

Distinct model from 
Pareto power law!




Strong localization in personalized 
PageRank Vectors


Due to the maximum degree d, this does not say anything about traditional 
power-law graphs (e.g. the Pareto case)


Theorem (Nassar, K., Gleich):

Let d be the max-degree, � be the min-degree,

n be the number of nodes, p be the decay exponent.

Then the number of non-zeros N needed for kx � x"k
1

 "

satisfies N  min

⇢
n,

1

�
Cp(1/")

�
1�↵

�

Cp =

(
d(1 + log d) p = 1

d
⇣

1 +

1

1�p (d (1/p)�1 � 1)

⌘
otherwise



We study the behavior of the "
Gauss-Southwell or push algorithm 
for computing PageRank

•  residual = remaining rank/dye to assign

•  solution = assigned rank/dye




Algorithm

1.  pick node with most residual dye

2.  assign dye to node

3.  update residual dye on neighbors, 

4.  then repeat.


Strong localization in personalized 
PageRank Vectors (sketch)




Strong localization in personalized 
PageRank Vectors (sketch)


(The proof builds on techniques from [Gleich, K., Internet Math 2014] )
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Define the residual vector r,

r = (1 � ↵)es � (1 � ↵P)

ˆ

x. Then

kx � ˆ

xk
1

< " is implied by krk
1

< "(1 � ↵).

After k steps, krkk
1

 kr

0

k
1

Qk
t=0

⇣
1 � 1�↵

Z (t)

⌘
,

where Z (t) denotes the number

of non-zero entries in rt .

To guarantee krkk
1

< "(1 � ↵),

it suffices to choose k so that,

((�k + Cp)/Cp)(↵� 1)/�  "

The hard part is bounding Z (t)
we show Z (t)  Cp + �t

race to min-degree!




Asymptotic theory prediction
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y-axis = number of non-zeros in approximate solution

x-axis = 

red dashed line vector contains all non-zeros

black line bound on non-zeros predicted by theorem
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Asymptotic theory prediction


red dashed line vector contains all non-zeros

black line bound on non-zeros predicted by theorem

blue line actual number of non-zeros in approximation
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Asymptotic theory prediction


red dashed line vector contains all non-zeros

black line bound on non-zeros predicted by theorem

blue line actual number of non-zeros in approximation
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L è Need a better bound




Empirical scaling guides a new bound.
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At left, p = 0.95, black, green, blue, red, represent
↵ = {0.25, 0.3, 0.5, 0.65, 0.85}

At right, ↵ = 0.5 and dashed blue, black and green
represent p = {0.5, 0.75, 0.95}



Empirical scaling guides a new bound.
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We conjecture (bound’) 


nnz(x")  d log(d)

0.2

1�↵

⇣
1

"

⌘
(1/4p2

)



Bound’ accurately predicts localization
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Conclusion and future work


•  Examine broader classes of graphs empirically 
(like real-world networks)"



•  Improve the localization theory to apply to a 
wider range of degree distributions"



•  Explore other graphs without localization – more 
specifically, relationship between diameter and 
localization


•  Get a theorem for the Pareto power-law case!



