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Localization in seeded PageRank

Inject dye 
here

Newman’s 
netscience graph

379 vertices
924 edges

 x is “zero” on most of the nodes



An example on a bigger graph
Crawl of flickr from 2006: ~800K nodes, 6M edges,"
seeded PageRank with     = 0.5

An example on a bigger graph
Crawl of flickr from 2006 ~800k nodes, 6M edges, alpha=1/2
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X-axis: node index
Y-axis: value at that index in true PageRank vector



Given a seed and a graph

What can we say about 
localization in the seeded 
PageRank vector with 
parameter     ?


es P = AT D�1

↵

(� � ↵P)x = (1 � ↵)es

THEOREM We show that if the graph has a type of skewed 
degree dist. then the solution x cannot have many big entries.

(Previously this was known only for const. degree or very slowly growing.)

Localization in seeded PageRank



Types of localization

kx � x

⇤k1  "

kD

�1(x � x

⇤)k1  "

Strong (uniform)!

Weak (entry-wise)!

Andersen, Chung, and Lang proved that 
the PageRank vector is weakly localized 
in the famous 2006 “push” paper.



Strong localization
When is strong localization possible?

Consider graphs with very 
slowly growing degree or a 
constant degree.

An easy corollary of our 
subsequent theory. Also 
known from functions of 
sparse-matrix literature.

Handles cases like the 
Erdős-Réyni graphs and grid 
graphs.

seed here



Strong localization can be impossible
Consider a star graph

Values in the PageRank vector 
seeded on the center node.
Essentially everything is needed 
to be non-zero to get a global 
error bound.


1
1 + ↵

↵

(1 + ↵)(n � 1)



Strong localization can be impossible
Consider a star graph

If we round k entries to zero,
1-norm error is     
so…"
"
this:"
"
requires

Values in the PageRank vector 
seeded on the center node.
Essentially everything is needed 
to be non-zero to get a global 
error bound.


kx � x

⇤k1  "

1
1 + ↵

↵

(1 + ↵)(n � 1)
k · ↵

(1 + ↵)(n � 1)

(1 + ↵)"
↵

· (n � 1)  k



Strong localization can be impossible
Seeded PageRank is also non-local on"
any complete bipartite graphs (generalizing star graphs)."
"
Why?"
Fact: P is complete-bipartite iff eigenvalues = {-1,0,1}.
PageRank is really a matrix function, f (x) = (1 � ↵x)�1.



Strong localization can be impossible
Seeded PageRank is also non-local on"
any complete bipartite graphs (generalizing star graphs)."
"
Why?"
Fact: P is complete-bipartite iff eigenvalues = {-1,0,1}.
PageRank is really a matrix function, 
Fact: a matrix function is equiv to interpolating polynomial"
"
"
Only 3 eigenvalues      p(x) is degree 2  (!)

f (x) = (1 � ↵x)�1.

p(�i ) = f (�i ) ! p(P) = f (P)

(� � ↵P)�1ej = f (P)ej = (c0� + c1P + c2P2)ej



When is localization possible?
Graphs exist where"
seeded PageRank has"
no local behavior (star graphs)
& graphs exist with"

local behavior everywhere"
( degree <= constant, or log log(n) )
"
So what properties can
determine localization
in seeded PageRank?



Skewed degree distributions
The k-th largest degree 

log log plot of the degree 
sequence for a synthetic
example with

10,000 nodes
d = 100  (max degree)"
   = 2      (min degree)"
p = 0.5   (decay exponent)
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d(k )  max(dk�p
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(     is min degree,
  p  is decay exponent )
�

�

Distinct model from 
Pareto power law!



Strong localization in personalized 
PageRank Vectors

Due to the maximum degree d, this does not say anything about traditional 
power-law graphs (e.g. the Pareto case)

Theorem (Nassar, K., Gleich):

Let d be the max-degree, � be the min-degree,

n be the number of nodes, p be the decay exponent.

Then the number of non-zeros N needed for kx � x"k
1

 "

satisfies N  min

⇢
n,

1

�
Cp(1/")

�
1�↵

�

Cp =

(
d(1 + log d) p = 1

d
⇣

1 +

1

1�p (d (1/p)�1 � 1)

⌘
otherwise



We study the behavior of the "
Gauss-Southwell or push algorithm 
for computing PageRank
•  residual = remaining rank/dye to assign
•  solution = assigned rank/dye


Algorithm
1.  pick node with most residual dye
2.  assign dye to node
3.  update residual dye on neighbors, 
4.  then repeat.

Strong localization in personalized 
PageRank Vectors (sketch)



Strong localization in personalized 
PageRank Vectors (sketch)

(The proof builds on techniques from [Gleich, K., Internet Math 2014] )
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Define the residual vector r,

r = (1 � ↵)es � (1 � ↵P)

ˆ

x. Then

kx � ˆ

xk
1

< " is implied by krk
1

< "(1 � ↵).

After k steps, krkk
1

 kr

0

k
1

Qk
t=0

⇣
1 � 1�↵

Z (t)

⌘
,

where Z (t) denotes the number

of non-zero entries in rt .

To guarantee krkk
1

< "(1 � ↵),

it suffices to choose k so that,

((�k + Cp)/Cp)(↵� 1)/�  "

The hard part is bounding Z (t)
we show Z (t)  Cp + �t

race to min-degree!



Asymptotic theory prediction
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Asymptotic theory prediction

red dashed line vector contains all non-zeros
black line bound on non-zeros predicted by theorem
blue line actual number of non-zeros in approximation

10
2

10
4

10
0

10
5

n = 104

α
 =

0.
25

10
2

10
4

10
0

10
5

α
 =

0.
5

10
2

10
4

10
0

10
5

n = 105

10
2

10
4

10
0

10
5

10
2

10
4

10
0

10
5

n = 106

10
2

10
4

10
0

10
5

10
2

10
4

10
0

10
5

n = 107

10
2

10
4

10
0

10
5

10
2

10
4

10
0

10
5

n = 108

10
2

10
4

10
0

10
5

10
2

10
4

10
0

10
5

n = 109

10
2

10
4

10
0

10
5



Asymptotic theory prediction

red dashed line vector contains all non-zeros
black line bound on non-zeros predicted by theorem
blue line actual number of non-zeros in approximation
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L è Need a better bound



Empirical scaling guides a new bound.
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At left, p = 0.95, black, green, blue, red, represent
↵ = {0.25, 0.3, 0.5, 0.65, 0.85}

At right, ↵ = 0.5 and dashed blue, black and green
represent p = {0.5, 0.75, 0.95}



Empirical scaling guides a new bound.
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Bound’ accurately predicts localization
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Conclusion and future work

•  Examine broader classes of graphs empirically 
(like real-world networks)"


•  Improve the localization theory to apply to a 
wider range of degree distributions"


•  Explore other graphs without localization – more 
specifically, relationship between diameter and 
localization

•  Get a theorem for the Pareto power-law case!


